PRODUKSI REKOMBINAN SEFALOSPORIN ASILASE SEBAGAI BIOKATALIS UNTUK PRODUKSI ASAM 7-AMINOSEFALOSPORANAT

Bima Wedana Isdiyono, Dudi Hardianto, Fransiskus Xaverius Ivan

Abstract


Production of Cephalosporin Acylase Recombinant as Biocatalyst for 7-Aminocephalosporanic Acid Production

7-aminocephalosporanic acid (7-ACA) is a precursor for the production of semisynthetic cephalosporin derivatives. The enzymatic 7-ACA production can use two-stage and one-step enzymatic methods. Two-stage enzymatic method uses D-amino acid oxidase (DAAO) enzyme to produce glutaryl-7-aminocephalosporanic acid (GL-7-ACA) in the first stage and glutaryl-7-aminocephalosporanic acid acylase to produce 7-ACA in the second stage. The one-stage enzymatic method using cephalosporin acylase (CPC acylase) converts the CPC to 7-ACA directly. The aim of this research was to produce recombinant CPC acylase in Escherichia coli BL21(DE3). Transformantion culture E. coli BL21(DE3) was induced with concentrations of IPTG 0; 0.25; 0.5; 0.75; 1; 2 mM for 5 hours. The induction time of IPTG was determined at 0, 1, 2, 3, 4, and 5 hours. The results showed that CPC acylase produced by E. coli BL21(DE3) with optimum condition of CPC acylase production was 0.5 mM IPTG and optimal induction time of IPTG was 5 hours.

Keywords: Cephalosporin, cephalosporin acylase, 7-ACA, protein expression, Escherichia coli BL21(DE3)

 

ABSTRAK

Asam 7-aminosefalosporanat (7-ACA) merupakan prekursor untuk produksi turunan sefalosporin semisintetik. Produksi 7-ACA secara enzimatik dapat menggunakan metode dua tahap dan satu tahap enzimatik. Metode enzimatik secara dua tahap menggunakan enzim asam D-amino oksidase (DAAO) untuk menghasilkan asam glutaril-7-aminosefalosporinat (GL-7-ACA) pada tahap pertama dan menggunakan asam glutaril-7-aminosefalosporinat asilase untuk menghasilkan 7-ACA pada tahap kedua. Metode enzimatik satu tahap dengan sefalosporin asilase (CPC asilase) mengubah CPC menjadi 7-ACA secara langsung. Tujuan penelitian adalah memproduksi rekombinan CPC asilase di dalam sel Escherichia coli BL21(DE3). Kultur Transforman E. coli BL21(DE3) diinduksi dengan konsentrasi IPTG 0; 0,25; 0,5; 0,75; 1; 2 mM selama 5 jam. Waktu induksi IPTG ditentukan pada 0, 1, 2, 3, 4 dan 5 jam. Hasil penelitian menunjukan bahwa CPC asilase diproduksi oleh E. coli BL21(DE3) dengan kondisi optimal produksi CPC asilase adalah konsentrasi IPTG 0,5 mM dan waktu induksi IPTG optimal adalah 5 jam.


Keywords


Sefalosporin; sefalosporin asilase; 7-ACA; rekayasa genetik; Escherichia coli BL21(DE3)

Full Text:

PDF

References


Cho KJ, Kim JK, Lee JH, Shin HJ, Park SS, Kim KH (2009) Structural features of cephalosporin acylase reveal the basis of autocatalytic activation. Biochem Biophys Res Commun 390:342-348. doi: 10.1016/j.bbrc.2009.09.134

Conti G, Pollegioni L, Molla G, Rosini E (2014) Strategic manipulation of an industrial biocatalyst - evolution of a cephalosporin C acylase. FEBS J 281:2443-2455. doi: 10.1111/febs.12798

Egorov AM, Kurochkina VB, Sklyarenko AV, Nys PS (2000) Enzymatic transformation of betalactam antibiotics: Trend of development and approaches to practical implementation. Biocatalysis Fundament Appl 41:43-46

Elander RP (2003) Industrial production of β-lactam antibiotic. Appl Microbiol Biotechnol 61:385-392. doi: 10.1007/s00253-003-1274-y

Gaurav K, Kundu K, Kundu S (2010) Biosynthesis of cephalosporin-C acylase enzyme: optimal media design, purification, and characterization. Artif Cells Blood Substit Immobil Biotechnol 38:277-283. doi: 10.3109/10731199.2010.482036

Hardianto D, Royani JI, Safarrida A (2016a) Cephalosporin C acylase from microbes for one-step enzymatic transformation of cephalosporin C to 7-aminocephalosporanic acid. J Pure Appl Microbiol 10:2495-2499. doi: 10.22207/JPAM.10.4.03

Hardianto D, Isdiyono BW, Ivan FX (2016b) Biokonversi sefalosporin C menjadi asam 7-aminosefalosporanat dengan sefalosporin asilase. J Bioteknol Biosains Indones 3(2): 89-95

Jobanputra AH, Rajendrabhai DV (2015) Cephalosporin C acylase from Pseudomonas species: Production and enhancement of its activity by optimization of process parameters. Biocat Agric Biotechnol 4:465-470. doi: 10.1016/j.bcab.2015.06.009

Khare P, Raj V, Chandra S, Agarwal S (2014) Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification. J Forensic Dent Sci 6:81-85. doi: 10.4103/0975-1475.132529

Larentis AL, Nicolau JF, Esteves Gdos S, Vareschini DT, de Almeida FV, dos Reis MG, Galler R, Medeiros MA (2014) Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res Notes 7:671. doi: 10.1186/1756-0500-7-671

Li Q, Huang X, Zhu Y (2014) Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking. J Mol Model 20:2314. doi: 10.1007/s00894-014-2314-5

Margawati ET, Ridwan M (2009). Expression and characterization of recombinant protein of JSU pGEX eiher by single or double cell lysis. Biota 14:166-171

Oh B, Kim M, Yoon J, Chung K, Shin Y, Lee D, Kim Y (2003) Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochem Biophys Res Commun 310:19-27. PMID: 14511642

Pollegioni L, Rosini E, Molla G (2013) Cephalosporin C acylase: Dream and (or) reality. Appl Microbiol Biotechnol 97:2341-2355. Doi: 10.1007/s00253-013-4741-0

Ren Y, Lei Y, Zhu Y (2014) Site-directed mutagenesis of cephalosporin C acylase and enzymatic conversion of cephalosporin C to 7-amino-cephalosporanic acid. Turk J Biochem 39:51-56. doi: 10.5505/tjb.2014.48569

Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Lab Press, New York

Shin YC, Jeon JYJ, Jung KH, Park MR, Kim Y (2009) Cephalosporin C acylase mutant and method for preparing 7-ACA using same. Patent No. US 7,592,168 B2

Wang Y, Yu H, Song W, An M, Zhang J, Luo H, Shen Z (2012) Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. J Biosci Bioeng 113:36-41 doi: 10.1016/j.jbiosc.2011.08.027

Xiao Y, Huo X, Qian Y, Zhang Y, Chen G, Ouyang P, Lin Z (2014) Engineering of a CPC acyalse using a facile pH indicator assay. J Ind Microbiol Biotechnol 41:1617-1625. doi: 10.1007/s10295-014-1501-9

Yang Z, Zhang L, Zhang Y, Zhang T, Feng Y, Lu X, Lan W, Wang J, Wu H, Cao C, Wang X (2011) Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method. PLoS One 6:e22981. doi: 10.1371/journal.pone.0022981

Zhang J, Yu H, Wang Y, Luo H, Shen Z (2014) Determination of the second autoproteolytic cleavage site of cephalosporin C acylase and the effect deleting its flanking residues in the α-C-terminal region. J Biotechnol 184:138-145. doi: 10.1016/j.jbiotec.2014.05.016

 


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Bioteknologi & Biosains Indonesia (JBBI)