IN SILICO STUDY OF CEPHALOSPORIN DERIVATIVES TO INHIBIT THE ACTIONS OF Pseudomonas aeruginosa

Main Article Content

Saly Amaliacahya Aprilian
Firdayani Firdayani
Susi Kusumaningrum

Abstract

Studi In Silico Senyawa Turunan Sefalosporin dalam Menghambat Aktivitas Bakteri Pseudomonas aeruginosa


Infeksi yang diakibatkan oleh bakteri gram-negatif, seperti Pseudomonas aeruginosa telah menyebar luas di seluruh dunia. Hal ini menjadi ancaman terhadap kesehatan masyarakat karena merupakan bakteri yang multi-drug resistance dan sulit diobati. Oleh karena itu, pentingnya pengembangan agen antimikroba untuk mengobati infeksi semakin meningkat dan salah satu yang saat ini banyak dikembangkan adalah senyawa turunan sefalosporin. Penelitian ini melakukan studi mengenai interaksi tiga dimensi (3D) antara antibiotik dari senyawa turunan Sefalosporin dengan penicillin-binding proteins (PBPs) pada P. aeruginosa. Tujuan dari penelitian ini adalah untuk mengklarifikasi bahwa agen antimikroba yang berasal dari senyawa turunan sefalosporin efektif untuk menghambat aktivitas bakteri P. aeruginosa. Struktur PBPs didapatkan dari Protein Data Bank (PDB ID: 5DF9). Sketsa struktur turunan sefalosporin digambar menggunakan Marvins Sketch. Kemudian, studi mengenai interaksi antara antibiotik dan PBPs dilakukan menggunakan program Mollegro Virtual Docker 6.0. Hasil yang didapatkan yaitu nilai rerank score terendah dari kelima generasi sefalosporin, di antaranya sefalotin (-116.306), sefotetan (-133.605), sefoperazon (-160.805), sefpirom (-144.045), dan seftarolin fosamil (-146.398).


Infections caused by gram-negative bacteria, such as Pseudomonas aeruginosa, have been spreading worldwide. It is a threat to public health because of its multi-drug resistance and difficulty to treat. Therefore, the demand for developing antimicrobial agents to treat infections is increasing. One of them that is currently under development is cephalosporin derivative compounds. This research studied the three-dimensional (3D) interaction between antibiotics from cephalosporin derivatives and penicillin-binding proteins (PBPs) in P. aeruginosa. This study aimed to clarify whether the cephalosporin derivatives were effective in inhibiting the activity of P. aeruginosa. The PBPs structure was obtained from the Protein Data Bank (PDB ID: 5DF9). The structural sketch of the cephalosporin derivative was drawn using the Marvins Sketch, whereas the study on the interaction between antibiotics and PBPs was carried out using the Mollegro Virtual Docker 6.0 program. The results showed the lowest rerank score from five cephalosporin derivatives, namely cephalotin (-116,306), cephotetan (-133.605), cephoperazone (-160.805), cephpirome (-144.045), and cephtaroline fosamil (-146.398).

Article Details

How to Cite
Aprilian, S. A., Firdayani, F., & Kusumaningrum, S. (2021). IN SILICO STUDY OF CEPHALOSPORIN DERIVATIVES TO INHIBIT THE ACTIONS OF Pseudomonas aeruginosa. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 296-303. https://doi.org/10.29122/jbbi.v7i2.3092
Section
Research Articles
Author Biography

Saly Amaliacahya Aprilian, Pusat Teknologi Farmasi dan Medika Agency for the Assessment and Application of Technology (BPPT)

Center of Pharmaceutical and Medical Technology

References

Abrigach F, Rokni Y, Takfaoui A, Khoutoul M, Doucet H, Asehraou A, Touzani R (2018) In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed Pharmacother 103: 653-661. doi: 10.1016/j.biopha.2018.04.061

Ahrens W, Pigeot I (2014) Handbook of Epidemiology. Second edition. Springer, New York. doi: 10.1007/978-0-387-09834-0

An YD, Du QZ, Tong LY, Yu ZW, Gong XW (2015) Cloning, expression and purification of penicillin-binding protein 3 from Pseudomonas aeruginosa CMCC 10104. Protein Expr Purif 110: 37-42. doi: 10.1016/j.pep.2014.12.004

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28: 235-242. doi: 10.1093/nar/28.1.235

Brao KJ, Wille BP, Lieberman J, Ernst RK, Shirtliff ME, Harro JM (2020) Scnn1b-transgenic BALB/c mice as a model of Pseudomonas aeruginosa infections of the cystic fibrosis lung. Infect Immun 88: e00237-20. doi: 10.1128/IAI.00237-20

Chaudhry SB, Veve MP, Wagner JL (2019) Cephalosporins: A focus on side chains and ?-lactam cross-reactivity. Pharmacy (Basel) 7: 103. doi: 10.3390/pharmacy7030103

Firdayani, Arsianti A, Churiyah, Yanuar A (2018) Molecular docking and dynamic simulation studies of benzoylated emodin into HBV core protein. J Young Pharm 10: S20-S24. doi: 10.5530/jyp.2018.2s.5

Gad SC (2014) Cephalosporins. In: Wexler P (ed) Encyclopedia Toxicology vol 1, 3rd edn. Elsevier, Amsterdam, pp 768-770

Golwalla S, Nadkar M, Golwalla SA (2017) Infectious Diseases and Infections. In: Nadkar MY (ed) Golwalla’s Medicine for Students. The Health Sci Pub, New Delhi, pp 693-726. doi: 10.5005/jp/books/13059_11

Han Y, Zheng Y, Zhang J, Hu C (2018) Neurobehavioral effects of cephalosporins: Assessment of locomotors activity, motor and sensory development in zebrafish. Front Pharmacol 9: 160. doi: 10.3389/fphar.2018.00160

Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49: 444-460. doi: 10.1021/ci800293n

Hogardt M, Heesemann J (2011) Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. In: Dobrindt U, Hacker J, Svanborg C (eds) Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology Vol 358. Springer, Berlin, pp 91-118. doi: 10.1007/82_2011_199

Kocaoglu O, Tsui H-CT, Winkler ME, Carlson EE (2015) Profiling of ?-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39. Antimicrob Agents Chemother 59: 3548-3555. doi: 10.1128/AAC.05142-14

Kosowska-Shick K, McGhee PL, Appelbaum PC (2010) Affinity of ceftaroline and other ?-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 54: 1670-1677. doi: 10.1128/AAC.00019-10

Kumar KM, Anitha P, Sivasakthi V, Bag S, Lavanya P, Anbarasu A, Ramaiah S (2014) In silico study on penicillin derivatives and cephalosporins for upper respiratory tract bacterial pathogens. 3 Biotech 4: 241-251. doi: 10.1007/s13205-013-0147-z

Lai CC, Chen CC, Lu YC, Chuang YC, Tang HJ (2019) In vitro activity of cefoperazone and cefoperazone-sulbactam against carbapenem- resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Infect Drug Resist 12: 25-29. doi: 10.2147/IDR.S181201

Lee AC, Jones AL (2018) Multi-resistant Pseudomonas aeruginosa ST235 in cystic fibrosis. Paediatr Respir Rev 27: 18-20. doi: 10.1016/j.prrv.2018.05.009

Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A (2006) Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 30: 673-691. doi: 10.1111/j.1574-6976.2006.00024.x

Masoud MS, Ali AE, Nasr NM (2014) Chemistry, classification, pharmacokinetics, clinical uses and analysis of beta lactam antibiotics?: A review. J Chem Pharm Res 6: 28-58

Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7: 146-157. doi: 10.2174/157340911795677602

Merchant S, Proudfoot EM, Quadri HN, McElroy HJ, Wright WR, Gupta A, Sarpong EM (2018) Risk factors for Pseudomonas aeruginosa infections in Asia-Pacific and consequences of inappropriate initial antimicrobial therapy: A systematic literature review and meta-analysis. J Glob Antimicrob Resist 14: 33-44. doi: 10.1016/j.jgar.2018.02.005

Pisano MB, Kumar A, Medda R, Gatto G, Pal R, Fais A, Era B, Cosentino S, Uriarte E, Santana L, Pintus F, Matos MJ (2019) Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules 24: 2815. doi: 10.3390/molecules24152815

Ren J, Nettleship JE, Males A, Stuart DI, Owens RJ (2016) Crystal structures of penicillin-binding protein 3 in complexes with azlocillin and cefoperazone in both acylated and deacylated forms. FEBS Lett 590: 288-297. doi: 10.1002/1873-3468.12054

Sainsbury S, Bird L, Rao V, Shepherd SM, Stuart DI, Hunter WN, Owens RJ, Ren J (2011) Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: Comparison of native and antibiotic-bound forms. J Mol Biol 405: 173-184. doi: 10.1016/j.jmb.2010.10.024

Singh SP, Deb CR, Ahmed SU, Saratchandra Y, Konwar BK (2016) Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90. J Biomed Res 30: 67-74. doi: 10.7555/JBR.30.20130158

Thomsen R, Christensen MH (2006) MolDock?: A new technique for high-accuracy molecular docking. J Med Chem 49: 3315-3321. doi: 10.1021/jm051197e

Vijesh AM, Isloor AM, Telkar S, Arulmoli T, Fun H-K (2013) Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab J Chem 6: 197-204. doi: 10.1016/j.arabjc.2011.10.007