DEKSTROSA MONOHIDRAT KUALITAS FARMASI DARI PATI Manihot ecsulenta, Metroxylon sagu, Zea mays, Oryza sativa, dan Triticum

Bayu Mahdi Kartika, Lely Khojayanti, . Nuha, Shelvi Listiana, Susi Kusumaningrum, Ayustiyan Futu Wijaya


Pharmaceutical Grade Dextrose Monohydrate from Manihot ecsulenta, Metroxylon sagu, Zea mays, Oryza sativa, dan Triticum Starch 


Pharmaceutical-grade dextrose monohydrate, one of raw materials used as active pharmaceutical ingredients (API) and additives, can be made from starch. There are five types of local Indonesian commercial starch that are potentially used, namely tapioca (Manihot esculenta), sago (Metroxylon sagu), corn (Zea mays), rice (Oryza sativa), and wheat (Triticum) starch. This study aimed to compare these five starches as raw materials for preparing pharmaceutical-grade dextrose monohydrate which was expected to meet the requirements of the Indonesian Pharmacopoeia (5th Edition) and the United States Pharmacopeia (USP). The starch was converted into dextrose monohydrate through liquefaction hydrolysis, saccharification hydrolysis, activated carbon purification and filtration, ion exchange purification, evaporation, crystallization and drying.  High Performance Liquid Chromatogram (HPLC) and the Luff-Schoorl methods were used for dextrose equivalent value (DE) analysis. The results showed that only three of the starch types produced pharmaceutical-grade dextrose monohydrate, namely (DE) sago starch (107.23% and 100.77%), corn starch (97.86% and 96.19%), and tapioca starch (85.18% and 99.20%).

Keywords: dextrose equivalent, dextrose monohydrate, hydrolysis, pharmaceutical grade, starch


Dekstrosa monohidrat kualitas farmasi, salah satu bahan baku yang digunakan sebagai active pharmaceutical ingredient (API) dan bahan tambahan, dapat dibuat dari bahan pati-patian. Terdapat lima jenis pati komersial lokal Indonesia yang berpotensi digunakan yakni pati tapioka (Manihot esculenta), pati sagu (Metroxylon sagu), pati jagung (Zea mays), pati beras (Oryza sativa), dan pati gandum (Triticum). Penelitian ini bertujuan membandingkan lima jenis pati tersebut sebagai bahan baku pembuatan dekstrosa monohidrat kualitas farmasi yang diharapkan mampu memenuhi standar persyaratan dari Farmakope Indonesia Edisi V dan United States Pharmacopeia (USP). Pati diubah menjadi dekstrosa monohidrat melalui hidrolisis likuifikasi, hidrolisis sakarifikasi, pemurnian karbon aktif dan filtrasi, pemurnian ion exchange, evaporasi, kristalisasi dan pengeringan. Metode High Performance Liquid Chromatogram (HPLC) dan Luff-Schoorl digunakan untuk analisis dextrose equivalent (DE). Hasil penelitian menunjukkan hanya tiga jenis pati yang menghasilkan dekstrosa monohidrat kualitas farmasi, yakni (DE) pati sagu (107,23% dan 100,77%), pati jagung (97,86% dan 96,19%), dan pati tapioka (85,18% dan 99,20%).

Kata kunci: dekstrosa monohidrat, dextrose ekuivalen, hidrolisis, kualitas farmasi, pati


dextrose monohydrate; pharmaceutical grade; corn starch; tapioca starch; sago starch

Full Text:



Acevedo D, Nagy ZK (2014) Systematic classification of unseeded batch crystallization systems for achievable shape and size analysis. J Cryst Growth 394:97–105. doi: 10.1016/j.jcrysgro.2014.02.024

Badan Standarisasi Nasional (1995) Tepung jagung, SNI 01-3727-1995. Badan Standarisasi Nasional, Jakarta

Badan Standarisasi Nasional (1996) Tepung tapioka, SNI 01-2997-1996. Badan Standarisasi Nasional, Jakarta

Badan Standarisasi Nasional (2008) Tepung sagu, SNI 3729-2008. Badan Standarisasi Nasional, Jakarta

Badan Standarisasi Nasional (2009) Tepung beras, SNI 3549-2009. Badan Standarisasi Nasional, Jakarta

Badan Standarisasi Nasional (2009) Tepung terigu sebagai bahan makanan, SNI 3751-2009. Badan Standarisasi Nasional, Jakarta

Bandini S, Nataloni L (2015) Nanofiltration for dextrose recovery from crystallization mother liquors: A feasibility study. Sep Purif Technol 139:53–62. doi: 10.1016/j.seppur.2014.10.025

Berski W, Ziobro R, Witczak M, Gambuś H (2018) The retrogradation kinetics of starches of different botanivecal origin in the presence of glucose syrup. Int J Biol Macromol 114:1288–1294. doi: 10.1016/j.ijbiomac.2018.04.019

Bosma WB, Schnupf U, Willett JL, Momany FA (2009) Density functional study of the infrared spectrum of glucose and glucose monohydrates in the OH stretch region. J Mol Struct THEOCHEM 905:59–69. doi: 10.1016/j.theochem.2009.03.013

Chen K, Luo G, Lei Z, Zhang Z, Zhang S, Chen J (2018a) Chromatographic separation of glucose, xylose and arabinose from lignocellulosic hydrolysates using cation exchange resin. Sep Purif Technol 195:288–294. doi: 10.1016/j.seppur.2017.12.030

Chen M, Wu S, Xu S, Yu B, Shilbayeh M, Liu Y, Zhu X, Wang J, Gong J (2018b) Caking of crystals: Characterization, mechanisms and prevention. Powder Technol 337:51–67. doi: 10.1016/j.powtec.2017.04.052

Choubane S, Khelil O, Cheba BA (2015) Bacillus sp. R2 and Bacillus cereus immobilized amylases for glucose syrup production. Procedia Technol 19:972–979. doi: 10.1016/j.protcy.2015.02.139

El-Yafi AKEZ, El-Zein H (2014) Technical crystallization for application in pharmaceutical material engineering: Review article. Asian J Pharm Sci 10:283–291. doi: 10.1016/j.ajps.2015.03.003

Flood AE, Srisanga S (2012) An improved model of the seeded batch crystallization of glucose monohydrate from aqueous solutions. J Food Eng 109:209–217. doi: 10.1016/j.jfoodeng.2011.09.035

Frawley PJ, Mitchell NA, Ó’Ciardhá CT, Hutton KW (2012) The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions. Chem Eng Sci 75:183–197. doi: 10.1016/j.ces.2012.03.041

Hartmann M, Palzer S (2011) Caking of amorphous powdersꟷMaterial aspects, modelling and applications. Powder Technol 206:112–121. doi: 10.1016/j.powtec.2010.04.014

Jha SK, Karthika S, Radhakrishnan TK (2017) Modelling and control of crystallization process. Resour Technol 3:94–100. doi: 10.1016/j.reffit.2017.01.002

Johnson R, Padmaja G, Moorthy SN (2009) Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques. Innov Food Sci Emerg Technol 10:616–620. doi: 10.1016/j.ifset.2009.04.001

Kementerian Kesehatan (2014) Farmakope Indonesia Edisi V. Kementerian Kesehatan Republik Indonesia, Jakarta, hal 289–290

Langrish TAG, Wang E, Das D (2015) Solid-phase crystal growth kinetics of spray-dried glucose powders. Food Bioprod Process 93:58–68. doi: 10.1016/j.fbp.2013.11.003

Liu T, Huo Y, Ma CY, Wang XZ (2017) Sparsity-based image monitoring of crystal size distribution during crystallization. J Cryst Growth 469:160–167. doi: 10.1016/j.jcrysgro.2016.09.040

Markande A, Nezzal A, Fitzpatrick JJ, Aerts L (2009) Investigation of the crystallization kinetics of dextrose monohydrate using in situ particle size and supersaturation monitoring. Part Sci Technol 27:373–388. doi: 10.1080/02726350902994050

Markande A, Fitzpatrick J, Nezzal A, Aerts L, Redl A (2012a) Effect of initial dextrose concentration, seeding and cooling profile on the crystallization of dextrose monohydrate. Food Bioprod Process 90:406–412. doi: 10.1016/j.fbp.2011.11.010

Markande A, Nezzal A, Fitzpatrick J, Aerts L, Redl A (2012b) Influence of impurities on the crystallization of dextrose monohydrate. J Cryst Growth 353:145–151. doi: 10.1016/j.jcrysgro.2012.04.021

Markande A, Fitzpatrick J, Nezzal A, Aerts L, Redl A (2013) Application of in-line monitoring for aiding interpretation and control of dextrose monohydrate crystallization. J Food Eng 114:8–13. doi: 10.1016/j.jfoodeng.2012.07.029

Momany F, Schnupf U (2014) DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent, COSMO. Comput Theor Chem 1029:57–67. doi: 10.1016/j.comptc.2013.12.007

Mostafazadeh AK, Sarshar M, Javadian S, Zarefard MR, Amirifard Haghighi Z (2011) Separation of fructose and glucose from date syrup using resin chromatographic method: Experimental data and mathematical modeling. Sep Purif Technol 79:72–78. doi: 10.1016/j.seppur.2011.03.014

Peroni CV, Parisi M, Chianese A (2010) Hybrid modelling and self-learning system for dextrose crystallization process. Chem Eng Res Des 88:1653–1658. doi: 10.1016/j.cherd.2010.01.038

Ramos JET, Duarte TC, Rodrigues AKO, Silva IJ, Cavalcante CL, Azevedo DCS (2011) On the production of glucose and fructose syrups from cashew apple juice derivatives. J Food Eng 102:355–360. doi: 10.1016/j.jfoodeng.2010.09.013

Silva R do N, Quintino FP, Monteiro VN, Asquieri ER (2010) Production of glucose and fructose syrups from cassava (Manihot esculenta Crantz) starch using enzymes produced by microorganisms isolated from Brazilian Cerrado soil. Food Sci Technol 30:213–217. doi: 10.1590/s0101-20612010005000011

Trasi NS, Boerrigter SXM, Byrn SR, Carvajal TM (2011) Investigating the effect of dehydration conditions on the compactability of glucose. Int J Pharm 406:55–61. doi: 10.1016/j.ijpharm.2010.12.042

USP (2016) Second Supplement to USP 39 - NF 34. The United States Pharmacopeial Convention, Rockville (MD)

Widenski DJ, Abbas A, Romagnoli JA (2011) A model-based nucleation study of the combined effect of seed properties and cooling rate in cooling crystallization. Comput Chem Eng 35:2696–2705. doi: 10.1016/j.compchemeng.2010.11.002

Zafar U, Vivacqua V, Calvert G, Ghadiri M, Cleaver JAS (2017) A review of bulk powder caking. Powder Technol 313:389–401. doi: 10.1016/j.powtec.2017.02.024

Zheng ZP, Fan WH, Li H, Tang J (2014) Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory. J Mol Spectrosc 296:9–13. doi: 10.1016/j.jms.2013.12.002



  • There are currently no refbacks.

Copyright (c) 2019 Jurnal Bioteknologi & Biosains Indonesia (JBBI)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

© Copyright: BY-NC-SA