TRANSFORMASI GENETIK DAN EKSPRESI MUTAN SUCROSE PHOSPHATE SYNTHASE PADA TANAMAN TOMAT

Suwinda Fibriani, Inyana Dwi Agustien, Widhi Dyah Sawitri, Bambang Sugiharto

Abstract


Genetic Transformation and Expression of Sucrose Phosphate Synthase Mutant in Tomato Plant

 

ABSTRACT

Sucrose phosphate synthase (SPS) is a key enzyme responsible for sucrose biosynthesis. In its regulation, SPS activity is modulated by an allosteric effector glucose-6-phosphate (G6P) suggested to have an ability to bind SPS N-terminus domain. To understand the role of N-terminus in regulating SPS, the SPS gene was mutated with the deletion of N-terminus domain (∆N-SPS). The ∆N-SPS gen was transformed into tomato plants with 5% transformation efficiency. Three transgenic tomato plant 4.20, 5.5.1, and 5.10 were obtained and confirmed by PCR analysis. Transgenic tomato expression was characterized by enzymatic analysis. Result showed that the G6P allosteric regulation in transgenic ∆N-SPS had lost and the SPS activity increased by 2-fold compared to non-transgenic plant. This showed that N-terminus domain-deleted SPS could be actively expressed in plant. 

Keywords: enzyme, genetic transformation, N-terminus domain deletion, sucrose phosphate synthase, tomato

 

ABSTRAK

Sucrose phosphate synthase (SPS) merupakan enzim kunci yang bertanggung jawab dalam sintesis sukrosa. Dalam regulasinya, aktifitas SPS dipengaruhi oleh alosterik efektor glukosa-6-fosfat (G6P) yang diduga dapat berikatan pada domain N-terminus SPS. Untuk mengetahui peran N-terminus pada regulasi SPS, dilakukan mutasi SPS dengan penghilangan domain N-terminus (∆N-SPS). Gen ∆N-SPS diinsersi pada tanaman tomat melalui transformasi genetik dengan efisiensi transformasi 5%. Tiga tanaman transgenik tomat (event4.20; 5.5.1; dan 5.10) didapatkan dan positif terkonfirmasi melalui analisis PCR. Ekspresi mutan dikarakterisasi melalui analisis enzimatik. Hasil menunjukkan bahwa tanaman tomat transgenik ∆N-SPS tidak dipengaruhi regulasi alosterik G6P dan aktifitas SPS 2 kali lipat lebih tinggi daripada tanaman bukan transgenik. Ini menunjukkan bahwa SPS dengan delesi domain N-terminus dapat terekspresi aktif pada tanaman.  

Kata Kunci: delesi domain N-terminus, enzim, sucrose phosphate synthase, tomat, transformasi genetik 


Keywords


Sucrose phosphate synthase; transformasi genetik; enzim; delesi domain N-terminus; tomat

Full Text:

PDF

References


Apriasti R, Widyaningrum S, Hidayati WN, Sawitri WD, Darsono N, Hase T, Sugiharto B (2018) Full sequence of the coat protein gene is required for the induction of pathogen-derived resistance against sugarcane mosaic virus in transgenic sugarcane. Mol Biol Rep 45(6):2749–2758. doi: 10.1007/s11033-018-4326-1

Baskaran S, Roach PJ, DePaoli-Roach, AA, Hurley TD (2010) Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci U S A 107(41):17563-17568. doi: 10.1073/pnas.1006340107

Breyer D, Kepertekh L, Reheul D (2014) Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants – scientific developments, current use, operational access, and biosafety considerations. CRC Crit Rev Plant Sci 33(4):286-330. Doi: 10.1080/07352689.2013.870422

But SY, Khmelenina VN, Reshetnikov AS, TrotsenkoYA (2013) Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis by Methylobacillus flagellatus KT. FEMS Microbiol Lett 347(1):43-51. doi: 10.1111/1574-6968.12219

Coleman HD, Beamish L, Reid A, Park JY, Mansfield SD (2010) Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Res 19(2):269-283. doi: 10.1007/s11248-009-9309-5

Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21. https ://doi.org/10.1007/BF027 12670

Diricks M, De Bruyn F, Van Daele P, Walmagh M, Desmet T (2015) Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes. Appl Microbiol Biotechnol 99(20), 8465–8474. doi: 10.1007/s00253-015-6548-7

Huber SC, Kerr PS, and Rufty TW (1985) Diurnal changes in sucrose phosphate synthase activity in leaves. Physiol Plant 64:81-87

Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431-444. doi: 10.1146/annurev.arplant.47.1.431

Lemoine R, Camera SL, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Thevenot PC, Mauorousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J and Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4(272):1-21. doi: 10.3389/fpls.2013.00272

Maloney VJ, Park JY, Unda F, Mansfield SD (2015) Sucrose   phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. J Exp Bot 66(14): 4383-4394. doi: 10.1093/jxb/erv101

Neliana IR, Sawitri WD, Ermawati N, Handoyo T, Sugiharto B (2019) Development of allergenicity and toxicity assessment methods for evaluating transgenic sugarcane overexpressing sucrose-phosphate synthase. Agronomy 9(1):23. doi: 10.3390/agronomy9010023

Ruan YL (2012) Signaling role of sucrose metabolism in development. Mol Plant 5(4):763-765. doi: 10.1093/mp/sss046

Sawitri WD, Narita H, Ishizaka-Ikeda E, Sugiharto B, Hase T, Nakagawa A (2016) Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. coli and insect Sf9 cells: An importance of the N-terminal domain for an allosteric regulatory property. J Biochem 159(6): 599–607. doi: 10.1093/jb/mvw004

Sawitri WD, Sugiharto B (2018a) Rekayasa Sucrose Phosphate Synthase untuk Meningkatkan Sukrosa Sebagai Sumber Karbon dan Energi Bagi Pertumbuhan Tanaman. In: Wikantika K (ed) Bunga Rampai ForMIND 2018. ITB Press, Bandung, Indonesia, pp 165-172. ISBN: 978-602-0705-19-4

Sawitri WD, Afidah SN, Nakagawa A, Hase T, Sugiharto B (2018b). Identification of UDP-glucose binding site in glycosyltransferase domain of sucrose phosphate synthase from sugarcane (Saccharum officinarum) by structure-based site-directed mutagenesis. Biophys Rev 10(2):293–298. doi: 10.1007/s12551-017-0360-9

Seger M, Gebril S, Tabilona J, Peel A, Sengupta-Gopalan, C (2014) Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco. Planta 241(1):69-81. doi: 10.1007/ s00425-014-2165-4

Solis-Guzman MG, Arguello AG, Lopez BJ, Ruiz HLF, Lopez MJE, Sanchez CL, Carreon AY, Martinez TM (2017) Arabidobsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organ and tissue, and their transcription is regulated by osmotic stress. Gene expr patterns 25-26:92-101.doi: 10.1016/j.gep.2017.06.001

Sugiharto B, Sakakibara H, Sumadi, Sugiyama T (1997). Differential expression of two genes for sucrose-phosphate synthase in sugarcane: Molecular cloning of the cDNAs and comparative analysis of gene expression. Plant Cell Physiol 38(8):961-965. doi: 10.1093/ oxfordjournals.pcp.a029258

Sugiharto B (2018) Chapter 8: Biotechnology of drought-tolerant sugarcane. In: Oliveira AD (ed) Sugarcane Technology and Research. IntechOpen, Florida, USA, pp 139-165. doi: 10.5772/intechopen.69564

Sun S, Kang XP, Xing XJ, Xu, XY, Cheng J, Zheng SW, Xing GM (2015) Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. cv. Hezuo 908) with improved efficiency. Biotechnol Biotechnol Equip 29(5):861-868 doi: 10.1080/13102818.2015.1056753

Toroser D, McMichael Jr R, Krause KP, Kurrect J, Sonnewald U, Stitt, Hubber SC (1999) Site-directed mutagenesis of serine-158 demonstrated its role in spinach leaf sucrose-phosphate synthase modulation. Plant J 17(4):407-413. doi: 10.1046/j.1365-313X.1999.00389.x

Torres WK, Kerr PS, Huber SC (1987) Isolation and characterization of multiple form of maize leaf sucrose-phosphate synthase. Physiol Plantarium 70:653-658

Verma AK, Upadhyay SK, Verma PC, Solomon S, Singh SB (2011) Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol 13(2):325-332. doi: 10.1111/j.1438-8677.2010.00379.x

Volkert K, Debast S, Voll LM, Schieβl I, Hofmann J, Schneider S, Börnke F (2014) Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. J Exp Bot 65(18):5217-5229. doi: 10.1093/jxb/eru282

Wang J, Du J, Mu X, Wang P (2017) Cloning and characterization of the Cerasus humilis sucrose phosphate synthase gene (ChSPS1). Plos One 12(10): e0186650. doi: 10.1371/journal.pone.0186650

Wang D, Zhao J, Hu B, Li J, Qin Y, Chen L, Qin Y, Hu G (2018) Identification and expression profile analysis of the sucrose phosphate synthase gene family in Litchi chinensis Sonn. PeerJ 6:e4379. doi: 10.7717/peerj.4379

Yang L, Wang C, Wang L, Xu C, Chen K (2013) An efficient multiplex PCR assay for early detection of Agrobacterium tumifaciens in transgenic plant material. Turk J Agric For 37:157-162. doi: 10.3906/tar-1009-1265

Yonekura M, Naohiro A, Hirose T, Onai K, Ishiura M, Okamura M, Ohsugi R, Ohto C (2013) The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose. Front Plant Sci 4(31):1-8. doi: 10.3389/fpls.2013.00031




DOI: http://dx.doi.org/10.29122/jbbi.v6i1.3341

Refbacks

  • There are currently no refbacks.


© Copyright: BY-NC-SA