KEANEKARAGAMAN ENZIM INVERTASE, PENGEMBANGAN STRAIN UNGGUL DAN TEKNOLOGI PRODUKSINYA

Main Article Content

Wilhelmus Terang Arga Sanjaya
. Giyanto
Rahayu Widyastuti
Dwi Andreas Santosa

Abstract

Invertase Diversity, Novel Strain and Production Technology Development

Invertase or β-fructofuranosidase (E.C.3.2.1.2.6) have been a valuable enzyme in food industry, so that research about enhancing invertase activity on an industrial scale has been reported massively. So far, the production of the invertase enzyme is highly dependent on the potential activity of the invertase enzyme derived from microorganisms. The development of enzyme production technology is also a concern in invertase research to obtain an efficient and inexpensive production system. So far, various developments in enzyme production technology and enzyme utilization have been carried out, including various innovations in immobilizing and increasing the stabilization of the invertase enzyme during the production process. The development of superior strains and enzyme production technology continues amid the discovery of the latest approaches such as genetic engineering, protein modification, and nanotechnology. This paper aims to discuss invertase variation from various organisms, its correlation to novel microbial strain development to increase invertase production and invertase enzyme production technologies development including immobilization technology and stabilization of invertase enzymes.

Keywords: β-fructofuranosidase, ezyme production, fermentation, immobilitation, invertase gene

ABSTRAK

Invertase atau β-fructofuranosidase (E.C.3.2.1.2.6) merupakan enzim yang sangat penting dalam dunia industri pangan sehingga berbagai optimasi aktivitas enzim untuk produksi dalam skala industri terus dilakukan. Produksi enzim invertase hingga sejauh ini sangat bergantung oleh potensi aktivitas enzim invertase yang diambil dari mikroorganisme. Selain itu, pengembangan teknologi produksi juga menjadi perhatian dalam pengembangan produksi dan pemanfaatan enzim untuk mendapatkan sistem produksi yang efisien dan murah. Sejauh ini berbagai pengembangan teknologi produksi enzim dan pemanfaatan enzim telah dilakukan, diantaranya dengan berbagai inovasi dalam melakukan imobilisasi dan peningkatan stabilisasi enzim invertase selama proses produksi. Pengembangan strain unggul dan teknologi produksi enzim terus dilakukan di tengah ditemukannya pendekatan-pendekatan terkini seperti rekayasa genentika, modifikasi protein, dan teknologi nano. Artikel ini bertujuan untuk membahas variasi enzim invertase dari berbagai organisme, korelasi pengembangan strain mikrobia unggul terhadap peningkatan produksi enzim invertase, dan perkembangan teknologi produksi enzim invertase meliputi teknologi imobilisasi dan stabilisasi enzim invertase.

Article Details

How to Cite
Sanjaya, W. T. A., Giyanto, ., Widyastuti, R., & Santosa, D. A. (2020). KEANEKARAGAMAN ENZIM INVERTASE, PENGEMBANGAN STRAIN UNGGUL DAN TEKNOLOGI PRODUKSINYA. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(1), 146–165. https://doi.org/10.29122/jbbi.v7i1.3705
Section
Review Article

References

Aita BC, Spannemberg SS, Schmaltz S, Zabot GL, Tres MV, Kuhn RC, Mazutti MA (2019) Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. J Environ Chem Eng 7:103193. doi: 10.1016/j.jece.2019.103193

Albertini AVP, Silva JL, Freire VN, Santos RP, Martins JL, Cavada BS, Cadena PG, Neto PJR, Pimentel MCB, Martínez CR, Porto ALF, Filho JLL (2013) Immobilized invertase studies on glass-ceramic support from coal fly ashes. Chem Eng J 214:91–96. doi: 10.1016/j.cej.2012.10.029

Alegre ACP, Polizeli MLTM, Terenzi HF, Jorge JA, Guimarães LHS (2009) Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Braz J Microbiol 40:612–622. doi: 10.1590/S1517-838220090003000025

Alves JN, Jorge JA, Guimarães LHS (2013) Production of invertases by anamorphic (Aspergillus nidulans) and teleomorphic (Emericela nidulans) fungi under submerged fermentation using rye flour as carbon source. Adv Microbiol 2013:421–429. doi: 10.4236/aim.2013.35057

Andjelkovic U, Milutinovic-Nikolic A, Jovic-Jovicic N, Bankovic P, Bajt T, Mojovic Z, Vujcic Z, Jovanovic D (2015) Efficient stabilization of Saccharomyces cerevisiae external invertase by immobilisation on modified beidellite nanoclays. Food Chem 168:262–269 doi: 10.1016/j.foodchem.2014.07.055

Aranda C, Robledo A, Loera O, Contreras-Esquivel JC, Rodríguez R, Aguilar CN (2006) Fungal invertase expression in solid-state fermentation. Food Technol Biotechnol 44:229–233

Awad GEA, Amer H, El-Gammal EW, Helmy WA, Esawy MA, Elnashar MMM (2013) Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads. Carbohydr Polym 93:1–37. doi: 10.1016/j.carbpol.2012.12.039

Azodi M, Falamaki C, Mohsenifar A (2011) Sucrose hydrolysis by invertase immobilized on functionalized porous silicon. J Mol Catal B Enzym 69:154–160. doi: 10.1016/j.molcatb.2011.01.011

Badr HR, Sims KA, Adams MWW (1994) Purification and characterization of sucrose a-glucohydrolase (invertase) from the hyperthermophilic archaeon Pyrococcus furiosus. Syst Appl Microbiol 17:1–6. doi: 10.1016/S0723-2020(11)80023-8

Billett EE, Billett MA, Burnett JH (1977) Stimulation of maize invertase activity following infection by Ustilago maydis. Phytochemistry 16:1163–1166. doi: 10.1016/S0031-9422(00)94352-8

Borghi DF, Guirardello R, FIlho LC (2009) Storage logistics of fruits and vegetables: effect of temperature. Chem Eng Trans 17:952–956. doi: 10.3303/CET0917159

Brown AJ (1902) Enzyme Action. J Chem Soc Trans 81:373–388. doi: 10.1039/CT9028100373

Brummell DA, Chen RKY, Harris JC, Zhang H, Hamiaux C, Kralicek AV, Mckenzie MJ (2011) Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J Exp Bot 62:3519–3534. doi: 10.1093/jxb/err043

Cabrera MÁ, Blamey JM (2018) Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 51:37. doi: 10.1186/s40659-018-0186-3

Cabrera MP, Assis CRD, Neri DFM, Pereira CF, Soria F, Carvalho LB (2017) High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles. Biotechnol Rep (Amst) 14:38–46. doi: 10.1016/j.btre.2017.03.001

Cabrera MP, da Foseca TF, Varela R, de Souza RVB, de Assis CRD, Marcatoma JQ, de Costa Maciel J, Neri DFM, Soria F, de Carvalho Jr LB (2018) Polyaniline-coated magnetic diatomite nanoparticles as a matrix for immobilizing enzymes. Appl Surf Sci 457:21–29. doi: 10.1016/j.apsusc.2018.06.238

Cacicedo ML, Manzo RM, Municoy S, Bonazza HL, Islan GA, Desimone M, Bellino M, Mammarella EJ, Castro GR (2019) Ch 7 - Immobilized enzymes and their applications. Adv Enzyme Technol 2019:169–200. doi: 10.1016/B978-0-444-64114-4.00007-8

Carneiro AAJ, Giese EC, Barbosa AM, Gomes E, Da Silva R (2011) Agaricus blazei as a substrate for the production of β-1,3-Glucanase by Trichoderma harzianum Rifai. Food Technol Biotechnol 49:341–346

Çelik E, Çalık P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118. doi: 10.1016/j.biotechadv.2011.09.011

Chand Bhalla T, Bansuli, Thakur N, Savitri, Thakur N (2017) Invertase of Saccharomyces cerevisiae SAA-612: Production, characterization and application in synthesis of fructo-oligosaccharides. LWT 77:178–185. doi: 10.1016/j.lwt.2016.11.034

Chavez FP, Rodriguez L, Diaz J, Delgado JM, Cremata JA (1997) Purification and characterization of an invertase from Candida utilis: Comparison with natural and recombinant yeast invertases. J Biotechnol 53:67–74. doi: 10.1016/s0168-1656(97)01663-5

Chen Z, Gao K, Su X, Rao P, An X (2015) Genome-wide identification of the invertase gene family in populus. PLoS One 10:e0138540. doi: 10.1371/journal.pone.0138540

Dalagnol LMG, Silveira VCC, da Silva HB, Manfroi V, Rodrigues RC (2017) Improvement of pectinase, xylanase and cellulase activities by ultrasound: Effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochem 61:80–87. doi: 10.1016/j.procbio.2017.06.029

de Gines SC, Maldonado MC, de Valdez GF (2000) Purification and characterization of invertase from Lactobacillus reuteri CRL 1100. Curr Microbiol 40:181–184. doi: 10.1007/s002849910036

de Oliveira Rodrigues P, Gurgel LVA, Pasquini D, Badotti F, Goes-Neto A, Baffi MA (2020) Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renew Energy 145:2683–2693. doi: 10.1016/j.renene.2019.08.041

de Souza Soares A, Augusto PED, de Castro Leite Júnior BR, Nogueira CA, Vieira ÉNR, de Barros FAR, Stringheta PC, Ramos AM (2019) Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT 107:164-170. doi: 10.1016/j.lwt.2019.02.083

Dipasquale L, Gambacorta A, Siciliano RA, Mazzeo MF, Lama L (2009) Purification and biochemical characterization of a native invertase from the hydrogen-producing Thermotoga neapolitana (DSM 4359). Extremophiles 13:345–354. doi: 10.1007/s00792-008-0222-2

Du L, Pang H, Wang Z, Lu J, Wei Y, Huang R (2013) Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH. PLoS One 8:e62306. doi: 10.1371/journal.pone.0062306

Ebaid R, Wang H, Sha C, Abomohra AE, Shao W (2019) Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: A critical review. J Clean Prod 238:117925. doi: 10.1016/j.jclepro.2019.117925

Elzobair KA, Stromberger ME, Ippolito JA (2016) Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress. Chemosphere 142:114–119. doi: 10.1016/j.chemosphere.2015.03.018

Ertürk B, Meral R (2019) The impact of stabilization on functional, molecular and thermal properties of rice bran. J Cereal Sci 88:71–78. doi: 10.1016/j.jcs.2019.05.011

Fils-Lycaon B, Julianus P, Chillet M, Galas C, Hubert O, Rinaldo D, Mbéguié-A-Mbéguié D (2011) Acid invertase as a serious candidate to control the balance sucrose versus (glucose + fructose) of banana fruit during ripening. Sci Hortic (Amsterdam) 129:197–206. doi: 10.1016/j.scienta.2011.03.029

Fotopoulos V (2005) Plant invertases: structure, function and regulation of a diverse enzyme family. J Biol Res 4:127–137

Giraldo MA, da Silva TM, Salvato F, Terenzi HF, Jorge JA, Guimaraes LHS (2012) Thermostable invertases from Paecylomyces variotii produced under submerged and solid-state fermentation using agroindustrial residues. World J Microbiol Biotechnol 28:463–472. doi: 10.1007/s11274-011-0837-9

Girelli AM, Astolfi ML, Scuto FR (2020) Agro-industrial wastes as potential carriers for enzyme immobilization: A review. Chemosphere 244:125368. doi: 10.1016/j.chemosphere.2019.125368

Graebin NG, Schoffer JN, de Andrades D, Hertz PF, Ayub MAZ, Rodrigues RC (2016) Immobilization of glycoside hydrolase families GH1, GH13 and GH70: State of the art and perspectives. Molecules 21: 1074. doi: 10.3390/molecules21081074

Guo PC, Wang Q, Wang Z, Dong Z, He H, Zhao P (2018) Biochemical characterization and functional analysis of invertase Bmsuc1 from silkworm, Bombyx mori. Int J Biol Macromol 107:2334–2341. doi: 10.1016/j.ijbiomac.2017.10.118

Hassan ME, Tamer TM, Omer AM (2016) Methods of enzyme immobilization. Int J Curr Pharm Rev Res 7:385–392

Heslot H, Gaillardin C (1992) Molecular Biology and Genetic Engineering of Yeasts. CRC Press, Florida USA. doi: 10.1201/9781351074735

Hoffmann JJ, Hövels M, Kosciow K, Deppenmeier U (2020) Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains. J Biotechnol 307:164–174. doi: 10.1016/j.jbiotec.2019.11.001

Hua W, El Sheikha AF, Xu J (2018) Molecular techniques for making recombinant enzymes used in food processing. Pp 95–109. In: El Sheikha AF, Levin R, Xu J (eds) Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability. John Wiley & Sons, New Jersey USA. doi: 10.1002/9781119374633.ch5

Huang G, Chen S, Dai C, Sun L, Sun W, Tang Y, Xiong F, He R, Ma H (2017) Effects of ultrasound on microbial growth and enzyme activity. Ultrason Sonochem 37:144–149. doi: 10.1016/j.ultsonch.2016.12.018

Hussain A, Rashid MH, Perveen R, Ashraf M (2009) Purification, kinetic and thermodynamic characterization of soluble acid invertase from sugarcane (Saccharum officinarum L.). Plant Physiol Biochem 47:188–194. doi: 10.1016/j.plaphy.2008.11.001

Isla MI, Vattuone MA, Ordonez RM, Sampietro AR (1999) Invertase activity associated with the walls of Solanum tuberosum tubers. Phytochemistry 50:525–534. doi: 10.1016/s0031-9422(98)00474-9

Jana A, Maity C, Halder SK, Das A, Pati BR, Mondal KC, Mohapatra PKD (2013) Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAB2. Biochem Eng J 77:161–170. doi: 10.1016/j.bej.2013.06.002

Khootama A, Putri DN, Hermansyah H (2018) Techno-economic analysis of lipase enzyme production from Aspergillus niger using agro-industrial waste by solid state fermentation. Energy Procedia 153:143–148. doi: 10.1016/j.egypro.2018.10.054

Kim JY, Mahe A, Guy S, Brangeon J, Roche O, Chourey PS, Prioul JL (2000) Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 245:89–102. doi: 10.1016/s0378-1119(00)00034-2

Krishnan HB, Pueppke SG (1990) Cherry fruit invertase: Partial purification, characterization and activity during fruit development. J Plant Physiol 135:662–666. doi: 10.1016/S0176-1617(11)80876-X

Kulshrestha S, Tyagi P, Sindhi V, Yadavilli KS (2013) Invertase and its applications - A brief review. J Pharm Res 7:792–797. doi: 10.1016/j.jopr.2013.07.014

L'Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84. doi: 10.1016/S0168-1656(00)00277-7

Lafraya A, Sanz-Aparicio J, Polaina J, Marín-Navarro J (2011) Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Appl Environ Microbiol 77:6148–6157. doi: 10.1128/AEM.05032-11

Lazar Z, Dulermo T, Neuvéglise C, Coq AC, Nicaud JM (2014) Hexokinase — A limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng 26:89–99. doi: 10.1016/j.ymben.2014.09.008

Lazar Z, Walczak E, Robak M (2011) Simultaneous production of citric acid and invertase by Yarrowia lipolytica SUC+ transformants. Bioresour Technol 102:6982–6989. doi: 10.1016/j.biortech.2011.04.032

Leal DP, Isla MI, Vattuone MA, Sampietro AR (1999) A hysteretic invertase from Equisetum giganteum L. Phytochem 52:1009–1016. doi: 10.1016/S0031-9422(99)00313-1

Leite P, Silva C, Salgado JM, Belo I (2019) Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Industrial Crops & Products 137:315–322. doi: 10.1016/j.indcrop.2019.04.044

Li Q, Al Loman A, Callow NV, Islam SMM, Ju LK (2018) Leveraging pH profiles to direct enzyme production (cellulase, xylanase, polygalacturonase, pectinase, a-galactosidase, and invertase) by Aspergillus foetidus. Biochem Eng J 137:247–254. doi: 10.1016/j.bej.2018.06.008

Lin Q, Wang S, Wang M, Cao R, Zhang R, Zhan R, Wang K (2019) A novel glycoside hydrolase family 42 enzyme with bifunctional β-galactosidase and α-L-arabinopyranosidase activities and its synergistic effects with cognate glycoside hydrolases in plant polysaccharides degradation. Int J Biol Macromol 140:129–139. doi: 10.1016/j.ijbiomac.2019.08.037

Liu HH, Ji XJ, Huang H (2015) Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol Adv 33:1522–1546. doi: 10.1016/j.biotechadv.2015.07.010

Liu X, Jiang Z, Ma S, Yan Q, Chen Z, Liu H (2020) High-level production and characterization of a novel b-1,3-1,4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process Biochem 92:252–260. doi: 10.1016/j.procbio.2020.01.017

Lorenzoni ASG, Aydos LF, Klein MP, Rodrigues RC, Hertz PF (2014) Fructooligosaccharides synthesis by highly stable immobilized b-fructofuranosidase from Aspergillus aculeatus. Carbohydr Polym 103:193–197. doi: 10.1016/j.carbpol.2013.12.038

Manoochehri H, Hosseini NF, Saidijam M, Taheri M, Rezaee H, Nouri F (2020) A review on invertase: Its potentials and applications. Biocatal Agric Biotechnol 25:101599. doi: 10.1016/j.bcab.2020.101599

Marić M, Grassino AN, Zhu Z, Barba FJ, BrnÄić M, BrnÄić SR (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37. doi: 10.1016/j.tifs.2018.03.022

Marín-Navarro J, Talens-Perales D, Polaina J (2015) One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Appl Microbiol Biotechnol 99:2549–2555. doi: 10.1007/s00253-014-6312-4

Metzenberg RL, Chandler SH, Ger- W (1963) The Purification and properties of invertase of Neurospora. Arch Biochem Biophys 100:503–511. doi: 10.1016/0003-9861(63)90118-8

Mirzaei EB, Ramazani ASA, Shafiee M, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Biomater 62:605–611. doi: 10.1080/00914037.2013.769165

Molaverdi M, Karimi K, Mirmohamadsadeghi S, Galbe M (2019) High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucor indicus at low enzyme loading. Energy Conversion Manage 182:520–529. doi: 10.1016/j.enconman.2018.12.078

Montiel-González AM, Viniegra-González G, Fernández FJ, Loera O (2004) Effect of water activity on invertase production in solid state fermentation by improved diploid strains of Aspergillus niger. Process Biochem 39:2085–2090. doi: 10.1016/j.procbio.2003.10.013

Morsy FM, Ibrahim SH (2016) Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701. Energy 109:412–419. doi: 10.1016/j.energy.2016.05.006

Nadeem H, Rashid MH, Siddique MH, Azeem F, Muzammil S, Javed MR, Ali MA, Rasul I, Riaz M (2015) Microbial invertases: A review on kinetics, thermodynamics, physiochemical properties. Process Biochem 50:1202–1210. doi: 10.1016/j.procbio.2015.04.015

Nguyen TY, Cai CM, Osman O, Kumar R, Wyman CE (2016) CELF pretreatment of corn stover boosts etanol titers and yields from high solids SSF with low enzyme loadings. Green Chem 18:1581–1589. doi: 10.1039/C5GC01977J

Ohara A, de Castro RJS, Nishide TG, Dias FFG, Bagagli MP, Sato HH (2015) Invertase production by Aspergillus niger under solid state fermentation: Focus on physical-chemical parameters, synergistic and antagonistic effects using agro-industrial wastes. Biocatal Agric Biotechnol 4:645–652. doi: 10.1016/j.bcab.2015.06.008

Oyedeji O, Bakare MK, Adewale IO, Olutiola PO, Omoboye OO (2017) Optimized production and characterization of thermostable invertase from Aspergillus niger IBK1, using pineapple peel as alternate substrate. Biocatal Agric Biotechnol 9:218–223. doi: 10.1016/j.bcab.2017.01.001

Pan Y-Q, Luo H-L, Li Y-R (2009) Soluble acid invertase and sucrose phosphate synthase: Key enzymes in regulating sucrose accumulation in sugarcane stalk. Sugar Tech 11:28–33. doi: 10.1007/s12355-009-0005-9

Pancoast HM, Junck WR (1981) Handbook of Sugars, Second Edition. AVI Publishing Company, Inc., Westport, Connecticut. doi: 10.1002/star.19810330613

Patel AK, Singhania RR, Pandey A (2016) Novel enzymatic processes applied to the food industry. Curr Opin Food Sci 7:64–72. doi: 10.1016/j.cofs.2015.12.002

Patel AK, Singhania RR, Pandey A (2017) Chapter 2 - Production, purification, and application of microbial enzymes. Pp 13–41. In Brahmachari G, Demain AL, Adrio JL (Eds.) Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Application. Elsevier, UK. doi: 10.1016/B978-0-12-803725-6.00002-9

Patil SS, Kar A, Mohapatra D (2016) Stabilization of rice bran using microwave: Process optimization and storage studies. Food Bioprod Process 99:204–211. doi: 10.1016/j.fbp.2016.05.002

Perez CL, Casciatori FP, Thomeo JC (2019) Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: The case of cellulolytic enzymes production by a thermophilic fungus. Chem Eng J 361:1142–1151. doi: 10.1016/j.cej.2018.12.169

Plascencia-Espinosa M, Santiago-Hernandez A, Pavon-Orozco P, Vallejo-Becerra V, Trejo-Estrada S, Sosa-Peinado A, Benitez-Cardoza CG, Hidalgo-Lara ME (2014) Effect of deglycosylation on the properties of thermophilic invertase purified from the yeast Candida guilliermondii MpIIIa. Process Biochem 49:1480–1487. doi: 10.1016/j.procbio.2014.05.022

Rahman MH, Akand AAH, Yeasmin T, Uddin MS, Rahman M (2001) Purification and properties of invertase from mango fruit. Pak J Biol Sci 4:1271–1274. doi: 10.3923/pjbs.2001.1271.1274

Rahman SM, Sen PK, Hasan MF, Miah MAS, Rahman MH (2004) Purification and characterization of invertase enzyme from sugarcane. Pak J Biol Sci 7:340–345. doi: 10.3923/pjbs.2004.340.345

Raj L, Chauhan GS, Azmi W, Ahn JH, Manuel J (2011) Kinetics study of invertase covalently linked to a new functional nanogel. Bioresour Technol 102:2177–2184. doi: 10.1016/j.biortech.2010.11.062

Raju A, Pulipati K, Jetti A (2016) Production of invertase by Aspergillus niger under solid state fermentation using orange fruit peel as substrate. Adv Crop Sci Tech 4:247. doi: 10.4172/2329-8863.1000247

Ranwala AP, Suematsu C, Masuda H (1992) Soluble and wall-bound invertases in strawberry fruit. Plant Sci 84:59–64. doi: 10.1016/0168-9452(92)90208-4

Romero-Gomez SJ, Augur C, Viniegra-González G (2000) Invertase production by Aspergillus niger in submerged solid-state fermentation. Biotechnol Lett 22:1255–1258. doi: 10.1023/A:1005659217932

Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955. doi: 10.1093/mp/ssq044

Rubio MC, Runco R, Navarro AR (2002) Invertase from a strain of Rhodotorula glutinis. Phytochem 61:605–609. doi: 10.1016/S0031-9422(02)00336-9

Rustiguel CB, Terenzi HF, Jorge JA, Guimarães LHS (2010) A novel silver-activated extracellular b-D-fructofuranosidase from Aspergillus phoenicis. J Mol Catal B Enzym 67:10–15. doi: 10.1016/j.molcatb.2010.06.012

Ryan SM, Fitzgerald GF, van Sinderen D (2005) Transcriptional regulation and characterization of a novel b-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl Environ Microbiol 71:3475–3482. doi: 10.1128/AEM.71.7.3475-3482.2005

Singh R, Kumar M, Mittal A, Kumar P (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174. doi: 10.1007/s13205-016-0485-8

Singh RS, Chauhan K, Kaur K, Pandey A (2020) Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. Bioresour Technol Reports 9:100364. doi: 10.1016/j.biteb.2019.100364

Sum WF, Rogers PJ, Jenkins ID, Guthrie RD (1980) Isolation of invertase from banana fruit (Musa cavendishii). Phytochemistry 19:399–401. doi: 10.1016/0031-9422(80)83188-8

Taliercio EW, Kim JY, Mahe A, Shanker S, Chi J, Cheng WH, Prioul JL, Chourey PS (1999) Isolation, characterization and expression analyses of two cell wall invertase genes in maize. J Plant Physiol 155:197–204. doi: 10.1016/S0176-1617(99)80007-8

Taskin M, Esim N, Genisel M, Ortucu S, Hasenekoglu I, Canli O, Erdal S (2013) Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields. Prep Biochem Biotechnol 43:177–188. doi: 10.1080/10826068.2012.713431

Taskin M, Ortucu S, Unver Y, Tasar OC, Ozdemir M, Kaymak HC (2016) Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Safety Environ Prot 103:136–143. doi: 10.1016/j.psep.2016.07.006

Tribst AAL, Cristianini M (2012) Increasing fungi amyloglucosidase activity by high pressure homogenization. Innov Food Sci Emerg Technol 16:21–25. doi: 10.1016/j.ifset.2012.03.002

Uma C, Gomathi D, Muthulakshmi C, Gopalakrishnan VK (2010) Production, purification and characterization of invertase by Aspergillus flavus using fruit peel waste as substrate. Adv Biol Res (Rennes) 4:31–36

Uma C, Gomathi D, Ravikumar G, Kalaiselvi M, Palaniswamy M (2012) Production and properties of invertase from a Cladosporium cladosporioides in SmF using pomegranate peel waste as substrate. Asian Pac J Trop Biomed 2:S605–S611. doi: 10.1016/S2221-1691(12)60282-2

Veana F, Fuentes-Garibay JA, Aguilar CN, Rodríguez-Herrera R, Guerrero-Olazarán M, Viader-Salvadó JM (2014) Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris. Enzyme Microb Technol 63:28–33. doi: 10.1016/j.enzmictec.2014.05.001

Vorster DJ, Botha FC (1998) Partial purification and characterization of sugarcane neutral invertase. Phytochem 49:651–655. doi: 10.1016/S0031-9422(98)00204-0

Waifalkar PP, Parit SB, Chougale AD, Sahoo SC, Patil PS, Patil PB (2016) Immobilization of invertase on chitosan coated g-Fe2O3 magnetic nanoparticles to facilitate magnetic separation. J Colloid Interface Sci 482:159–164. doi: 10.1016/j.jcis.2016.07.082

Wan E, Akana M, Pons J, Chen J, Musone S, Kwok P-Y, Liao W (2010) Green technologies for room temperature nucleic acid storage. Curr Issues Mol Biol 12:135–142. PMID: 19801719

Wan H, Wu L, Yang Y, Zhou G, Ruan Y (2018) Evolution of sucrose metabolism: The dichotomy of invertases and beyond. Trends Plant Sci 23:163–177. doi: 10.1016/j.tplants.2017.11.001

Wang D, Yan L, Ma X, Wang W, Zou M, Zhong J, Ding T, Ye X, Liu D (2018) Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. Int J Biol Macromol 119:453–461. doi: 10.1016/j.ijbiomac.2018.07.133

Wang J, Nayak S, Koch K, Ming R (2013) Carbon partitioning in sugarcane (Saccharum species). Front Plant Sci 4:201. doi: 10.3389/fpls.2013.00201

Wang L, Zheng Y, Ding S, Zhang Q, Chen Y, Zhang J (2017) Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biol 17:109. doi: 10.1186/s12870-017-1052-0

Warchol M, Perrin S, Grill J-P, Schneider F (2002) Characterization of a purified b-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett Appl Microbiol 35:462–467. doi: 10.1046/j.1472-765X.2002.01224.x

Win TT, Isono N, Kusnadi Y, Watanabe K, Obae K, Ito H, Matsui H (2004) Enzymatic synthesis of two novel non-reducing oligosaccharides using transfructosylation activity with β-fructofuranosidase from Arthrobacter globiformis. Biotechnol Lett 26:499–503. doi: 10.1023/b:bile.0000019557.44196.63

Xue J, Tang Y, Wang S, Yang R, Xue Y, Wu C, Zhang X (2018) Assessment of vase quality and transcriptional regulation of sucrose transporter and invertase genes in cut peony (Paeonia lactiflora ‘Yang Fei Chu Yu’) treated by exogenous sucrose. Postharvest Biol Technol 143:92–101. doi: 10.1016/j.postharvbio.2018.04.014

Yamamoto K, Kitamoto Y, Ohata N, Isshiki S, Ichikawa Y (1986) Purification and properties of invertase from a glutamate-producing bacterium. J Ferment Technol 64:285–291. doi: 10.1016/0385-6380(86)90120-2

Yildiz HB, Kamaci M, Azak H, Secgin O, Suer O (2013) A comparative study: Immobilization of yeast cells and invertase in poly(ethyleneoxide) electrodes. J Mol Catal B Enzym 91:52–58. doi: 10.1016/j.molcatb.2013.02.009

Yoon M-H, Choi W-Y, Kwon S-J, Yi S-H, Lee D-H, Lee J-S (2007) Purification and properties of intracelluler invertase from alkalophilic and thermophilic Bacillus cereus TA-11. J Appl BIol Chem 50:196–201

Zhang W, Ruirui L, Ai X, Chen J, Xu W, Li W, Ai Y (2018) Enzyme activity and microbial biomass availability in artificial soils on rock-cut slopes restored with outside soil spray seeding (OSSS): Influence of topography and season. J Environ Manage 211:287–295. doi: 10.1016/j.jenvman.2018.01.005

Zhang Y, Geary T, Simpson BK (2019) Genetically modified food enzymes:A review. Curr Opin Food Sci 25:14–18. doi: 10.1016/j.cofs.2019.01.002

Zhang YL, Zhang AH, Jiang J (2013) Gene expression patterns of invertase gene families and modulation of the inhibitor gene in tomato sucrose metabolism. Genet Mol Res 12:3412–3420. doi: 10.4238/2013.january.24.1