EKPRESI ANTIGEN Ag85B DARI <em>Mycobacterium tuberculosis</em> PADA GALUR SEL MAMALIA

Main Article Content

Sabar Pambudi
Tika Widayanti
Nadya Stephanie


Expression of Mycobacterium tuberculosis Ag85B Antigen in Mammalian Cell Culture

Tuberculosis (TB) continues to be a major health problem worldwide, affecting millions of people each year. The only vaccine approved for the prevention of TB is Bacillus Calmette-Guérin (BCG). However, one of the limitations of BCG is that its preventive effect against pulmonary TB varies from person to person. Therefore, there arises a need for a new TB vaccine to replace BCG. This study aims to obtain the Ag85B recombinant protein which has characteristics similar to the native Ag85B antigen from Mycobacterium tuberculosis. In this study, we cloned and expressed recombinant Ag85B in mammalian cell culture. In the initial step, we cloned synthetic Ag85B into mammalian expression vector pFLAG-CMV4 and expressed the gene in CHO-K1 cells. Interestingly, a specific band around 30 kDa was observed in the culture media of transfected cells by Western blot analysis. The results from our research showed the potency of mammalian expression system to produce recombinant protein Ag85B for new TB vaccine candidate.

Keywords: Ag85B, mammalian cells, tuberculosis, vaccine, expression



Tuberkulosis (TB) terus menjadi salah satu masalah kesehatan dunia yang mempengaruhi jutaan manusia setiap tahun. Satu-satunya vaksin untuk TB yang ada adalah Bacillus Calmette-Guérin (BCG). Namun demikian, vaksin BCG ini memiliki kelemahan berupa terjadi efek preventif yang bervariasi dari satu individu terhadap individu lainnya.  Oleh sebab itu diperlukan pengembangan vaksin TB yang dapat menggantikan vaksin BCG yang sudah ada. Penelitian ini bertujuan memperoleh protein rekombinan Ag85B yang memiliki karakteristik mirip dengan antigen Ag85B native dari Mycobacterium tuberculosis. Pada penelitian ini, telah dilakukan kegiatan pengklonaan dan ekspresi gen Ag85B pada galur sel mamalia.  Pada tahap awal dilakukan pengklonaan gen sintesis Ag85B ke dalam plasmid pada sel mamalia pFLAG-CMV4 dan diekspresikan gennya pada sel CHO-K1. Hasil analisis Western blot menunjukan tersekresinya gen target berukuran 30 kDa pada media kultur dari sel mamalia yang ditransfeksi. Hasil dari penelitian ini menunjukkan potensi dari sistem ekpresi untuk protein rekombinan Ag85B pada galur sel mamalia sebagai kandidat vaksin TB yang baru.

Article Details

How to Cite
Pambudi, S., Widayanti, T., & Stephanie, N. (2020). EKPRESI ANTIGEN Ag85B DARI <em>Mycobacterium tuberculosis</em> PADA GALUR SEL MAMALIA. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(1), 86–95. https://doi.org/10.29122/jbbi.v7i1.3840
Research Articles


Ahmad F, Zubair S, Gupta P, Gupta UD, Patel R, Owais M (2017) Evaluation of aggregated Ag85B antigen for its biophysical properties, immunogenicity, and vaccination potential in a murine model of tuberculosis infection. Front Immunol 8:1608. doi: 10.3389/fimmu.2017.01608

Centis R, D’Ambrosio L, Zumla A, Migliori GB (2017) Shifting from tuberculosis control to elimination: Where are we? What are the variables dan limitations? Is it achievable? Int J Infect Dis 56:30–33. doi: 10.1016/j.ijid.2016.11.416

Chapin HC, Rajendran V, Capasso A, Caplan MJ (2009) Detecting the surface localization dan cytoplasmic cleavage of membrane-bound proteins. Methods Cell Biol 94:223–239. doi: 10.1016/S0091-679X(08)94011-5

Dockrell HM, Smith SG (2017) What have we learnt about BCG vaccination in the last 20 years? Front Immunol 8:1134. doi: 10.3389/fimmu.2017.01134

Duarte R, Lönnroth K, Carvalho C, Lima F, Carvalho ACC, Muñoz-Torrico M, Centis R (2018) Tuberculosis, social determinants dan co-morbidities (including HIV). Pulmonology 24:115–119. doi: 10.1016/j.rppnen.2017.11.003

Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, dan future perspectives. Crit Rev Biotechnol 36:1110–1122. doi: 10.3109/07388551.2015.1084266

Ernst JD, Cornelius A, Bolz M (2019) Dynamics of Mycobacterium tuberculosis Ag85B revealed by a sensitive enzyme-linked immunosorbent assay. mBio 10:e00611–19. doi: 10.1128/mBio.00611-19

Favorov M, Ali M, Tursunbayeva A, Aitmagambetova I, Kilgore P, Ismailov S, Chorba T (2012) Comparative tuberculosis (TB) prevention effectiveness in children of bacillus calmette-guérin (BCG) vaccines from different sources, Kazakhstan. PLoS One 7:e32567. doi: 10.1371/journal.pone.0032567

Fihiruddin, Artama WT, Wibawa T, Mertaniasih NM (2019) Expression of immunoglobulin, granzyme-B and perforin against Ag85A and Ag85B proteins of Mycobacterium tuberculosis in Balb/c mice. Afr J Infect Dis 13:13–20. doi: 10.21010/ajid.v13i2.2

Gillis TP, Tullius MV, Horwitz MA (2014) rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B. Infect Immun 82:3900–3909. doi: 10.1128/IAI.01499-13

Gupta SK, Srivastava SK, Sharma A, Nalage VHH, Salvi D, Kushwaha H, Chitnis NB, Shukla P (2017) Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS One 12:e0181455. doi: 10.1371/journal.pone.0181455

Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113. doi: 10.1016/0076-6879(91)04006-a

Huygen K (2014) The Immunodominant T-cell epitopes of the mycolyl-transferases of the antigen 85 complex of M. tuberculosis. Front Immunol 5:321. doi: 10.3389/fimmu.2014.00321

Kruh-Garcia NA, Murray M, Prucha JG, Dobos KM (2014) Antigen 85 variation across lineages of Mycobacterium tuberculosis-implications for vaccine and biomarker success. J Proteomics 97:141–150. doi: 10.1016/j.jprot.2013.07.005

Kwan CK, Ernst JD (2011) HIV and tuberculosis: A deadly human syndemic. Clin Microbiol Rev 24:351–376. doi: 10.1128/CMR.00042-10

Kwon B-E, Ahn J-H, Min S, Kim H, Seo J, Yeo S-G, Ko H-J (2018) Development of new preventive and therapeutic vaccines for tuberculosis. Immune Netw 18:e17. doi: 10.4110/in.2018.18.e17

Lee SH (2016) Tuberculosis infection and latent tuberculosis. Tuberc Respir Dis (Seoul) 79:201–206. doi: 10.4046/trd.2016.79.4.201

Luca S, Mihaescu T (2013) History of BCG vaccine. Maedica (Buchar) 8:53–58

Matsuo K, Yasutomi Y (2011) Mycobacterium bovis bacille calmette-guérin as a vaccine vector for global infectious disease control. Tuberc Res Treat 2011:574591. doi: 10.1155/2011/574591

Palmer MV, Thacker TC (2018) Use of the human vaccine, Mycobacterium bovis bacillus calmette guérin in deer. Front Vet Sci 5:244. doi: 10.3389/fvets.2018.00244

Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G (2012) Tuberculosis and HIV co-infection. PLoS Pathog 8:e1002464. doi: 10.1371/journal.ppat.1002464

Rustomjee R, Zumla A (2015) Delamanid expanded access novel treatment of drug resistant tuberculosis. Infect Drug Resist 8:359–366. doi: 10.2147/IDR.S62119

Sathkumara HD, Pai S, Aceves-Sánchez MdJ, Ketheesan N, Flores-Valdez MA, Kupz A (2019) BCG vaccination prevents reactivation of latent lymphatic murine tuberculosis independently of CD4+ T cells. Front Immunol 10:532. doi: 10.3389/fimmu.2019.00532

Seung KJ, Keshavjee S, Rich ML (2015) Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 5:a017863. doi: 10.1101/cshperspect.a017863

Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496. doi: 10.1128/cmr.16.3.463-496.2003

Viljoen A, Richard M, Nguyen PC, Fourquet P, Camoin L, Paudal RR, Gnawali GR, Spilling CD, Cavalier J-F, Canaan S, Blaise M, Kremer L (2018) Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo. J Biol Chem 293:2755–2769. doi: 10.1074/jbc.RA117.000760

Zhang C, Song X, Zhao Y, Zhang H, Zhao S, Mao F, Bai B, Wu S, Shi C (2015) Mycobacterium tuberculosis secreted proteins as potential biomarkers for the diagnosis of active tuberculosis and latent tuberculosis infection. J Clin Lab Anal 29:375–382. doi: 10.1002/jcla.21782