POTENSI SENYAWA BIOAKTIF TANAMAN KELOR PENGHAMBAT INTERAKSI ANGIOTENSIN-CONVERTING ENZYME 2 PADA SINDROMA SARS-COV-2

Main Article Content

Maharani Pertiwi Koentjoro
Adyan Donastin
Endry Nugroho Prasetyo

Abstract

The Potential of Moringa oleifera Bioactive Compounds for Inhibiting Angiotensin-Converting Enzyme 2 Interaction in SARS-Cov-2 Syndrome


Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) is a threat to human health. This infection is determined by the interaction of the spike S1 domain protein with angiotensin-converting enzyme 2 (ACE2) in the epithelial cells of the respiratory tract, especially the lungs. ACE2 inhibition is an important target in controlling COVID-19. Flavonoids of medicinal plants, are known to interfere with ACE (ACE2 homologous). Therefore, this study aims to explore the ability of apiin, epicatechin, and hesperetin from Moringa oleifera in interacting with the ACE2 using MOE 2008.10. The ligand molecules were prepared from PubChem database. The ACE2 protein was retrieved from Protein Data Bank (ID 1R4L) and analyzed for the active sites. Analysis of docking scores and hydrogen bonds of ACE2-ligand complex and active site showed that the affinity of flavonoids can be ranked as hesperetin > epicatechin > apiin > C19H23Cl2N3O4. The results provided computational information that apiin, epicatechin, and hesperetin have the potential to prevent COVID-19 infection. The prediction of activity spectra for substances (PASS) score showed the ligand displays antiviral activity.


Infeksi severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pada pandemi coronavirus disease 2019 (COVID-19) menjadi ancaman dunia kesehatan saat ini. Infeksi SARS-CoV-2 ditentukan oleh interaksi protein spike envelope S1 domain dengan reseptor angiotensin-converting enzyme 2 (ACE2) yang diekspresikan pada sel epitel saluran pernafasan terutama paru-paru. Mekanisme penghambatan ACE2 menjadi target penting dalam pengendalian COVID-19. Senyawa bioaktif tanaman obat, seperti flavonoid diketahui mampu mengganggu fungsi banyak makromolekul termasuk ACE (homolog dengan ACE2). Penelitian ini bertujuan mengeksplorasi kemampuan senyawa apiin, epicatechin, dan hesperetin dari Moringa oleifera dalam berinteraksi dengan sisi aktif ACE2 menggunakan metode penambatan molekul. Studi dilakukan dengan preparasi struktur molekul ligan dari PubChem database dan diolah dengan MOE 2008.10. Selanjutnya, data protein ACE2 (Protein Data Bank ID 1R4L) dianalisis sisi aktifnya untuk mengetahui lokasi penambatan ligan senyawa. Analisis skor docking dan ikatan hydrogen komplek ligan dan sisi aktif ACE2 menunjukkan bahwa afinitas flavonoid dapat diperingkatkan sebagai afinitas hesperetin > epicatechin > apiin > C19H23Cl2N3O4. Ketiga ligan senyawa yang terkandung dalam M. oleifera secara in silico mampu mengikat sisi aktif ACE2, sehingga berpotensi mencegah infeksi COVID-19. Skor PASS (prediction of activity spectra for substances) menunjukkan aktivitas biologis ligan yang menyerupai antiviral.

Article Details

How to Cite
Koentjoro, M. P., Donastin, A., & Prasetyo, E. N. (2021). POTENSI SENYAWA BIOAKTIF TANAMAN KELOR PENGHAMBAT INTERAKSI ANGIOTENSIN-CONVERTING ENZYME 2 PADA SINDROMA SARS-COV-2. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 259-270. https://doi.org/10.29122/jbbi.v7i2.4156
Section
Research Articles

References

Aitipamula S, Vangala VR (2017) X-ray crystallography and its role in understanding the physicochemical properties of pharmaceutical cocrystals. J Indian Inst Sci 97: 227-243. doi: 10.1007/s41745-017-0026-4

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rolliger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33: 1582?1614. doi: 10.1016/j.biotechadv.2015.08.001

Bahadur S, Long W, Shuaib M (2020) Human coronaviruses with emphasis on the COVID-19 outbreak. Virusdisease 31: 1-5. doi: 10.1007/s13337-020-00594-y

Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5th edition. WH Freeman, New York

Blaising J, Levy PL, Polyak SJ, Stanifer M, Boulant S, Pecheur EI (2013) Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking. Antiviral Res 100: 215-219. doi: 10.1016/j.antiviral.2013.08.008

Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D (2020) Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect 81: 318-356. doi: 10.1016/j.iinf.2020.04.017

de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vriend G, Berendsen HJC (1997) Prediction of protein conformational freedom from distance constraints. Proteins 29: 240-251. doi: 10.1002/(SICI)1097-0134(199710)29:2<240::AID-PROT11>3.0.CO;2-O

Ferreira PG, Ferraz AC, Figueiredo JE Lima CF, Rodrigues VG, Taranto AG, Ferreira JMS, Brandão GC, Vieira–Filho SA, Duarte LP, de Brito Magalhães CL, de Magalhães JC (2018) Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening. Arch Virol 163: 1567?1576. doi:10.1007/s00705-018-3774-1

Feustel S, Ayón-Pérez F, Sandoval-Rodriguez A, Rodriguez-Echevarria R, Contreras-Salinas H, Armendariz-Borunda J, Sanchez-Orozco LV (2017) Protective effects of Moringa oleifera on HBV genotypes C and H transiently transfected Huh7 cells. J Immunol Res 2017: 6063850. doi :10.1155/2017/6063850

Heller L, Mota CR, Greco DB (2020) COVID-19 faecal-oral transmission: Are we asking the right questions? Sci Total Environ 729: 138919. doi: 10.1016/j.scitotenv.2020.138919

Huang W, Ravikumar KM, Parisien M, Yang S (2016) Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. J Struct Biol 196: 340-349. doi: 10.1016/j/jsb.2016.08.001

Imamsari M, Koentjoro MP, Nurhayati AP Isdiantoni, Prasetyo EN (2018) In vivo preliminary examination of Moringa oleifera leaves extract as antiaging candidate in Swiss webster male mice (Mus musculus). Int J Pharm Sci Res 9: 3638-3646. doi: 10.13040/ IJPSR.0975-8232.9(9).3638-46

Jia H (2016) Pulmonary angiotensin–converting enzyme 2 (ACE2) and inflammatory lung disease. Shock 46: 239-248. doi: 10.1097/SHK.0000000000000633

Kementerian Kesehatan (2020) Pedoman Pencegahan dan Pengendalian Coronavirus Disease (COVID-19). Revisi ke-3. Direktorat Jenderal Pencegahan dan Pengendalian Penyakit, Kementerian Kesehatan RI, Jakarta

Khan H, Jaiswal V, Kulshreshtha S, Khan A (2019) Potential angiotensin converting enzyme inhibitors from Moringa oleifera. Recent Pat Biotechnol 13: 239-248. doi: 10.2174/1872208313666190211114229

Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16: 747-748. doi: 10.1093/bioinformatics/16.8.747

Laksmiani NPL, Larasanty LPF, Santika AGGJ, Prayoga PAA, Dewi AAIK, Dewi NPA (2020) Active compounds activity from medicinal plants against SARS-CoV-2 using in silico assay. Biomed Pharmacol J 13: 873-881. doi: 10.13005/bpj/1953

Lin YT, Wu YH, Tseng CK, Lin CK, Chen WC, Hsu YC, Lee JC (2013) Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PLoS One 8: e54466. doi: /10.1371/journal.pone.0054466

Lin H, Zhu H, Tan J, Wang H, Wang Z, Li P, Zhao C, Liu J (2019) Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules 24: 942. doi: 10.3390/molecules24050942

Lisi L, Lacal PM, Barbaccia ML, Graziani G (2020) Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochem Pharmacol 180: 114169. doi: 10.1016/j.bcp.2020.114169

Mourad JJ, Levy BI (2020) Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nat Rev Cardiol 17: 313. doi: 10.1038/s41569-020-0368-x

Mukund V, Behera SK, Alam A, Nagaraju GP (2019) Molecular docking analysis of nuclear factor-?B and genistein interaction on the context of breast cancer. Bioinformation 15: 11-17. doi: 10.6026/97320630015011

Ogbole OO, Akinleye TE, Segun PA, Faleye TC, Adeniji AJ (2018) In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J 15: 110. doi: 10.1186/s12985-018-1022-7

Oo A, Hassandarvish P, Chin SP, Lee VS, Abu Bakar S, Zandi K (2016) In silico study on anti-Chikungunya virus activity of hesperetin. Peer J 4: e2602. doi: 10.7717/peerj.2602

Parikh HI, Kellogg GE (2014) Intuitive, but not simple: Including explicit water molecules in protein-protein docking simulations improves model quality. Proteins 82: 916-932. doi: 10.1002/prot.24466

Rahman N, Muhammad I, Gul-E-Nayab HK, Aschner M, Filosa R, Daglia M (2019) Molecular docking of isolated alkaloids for possible ?-glucosidase inhibition. Biomolecules 9: 544. doi: 10.3390/biom9100544

Riastiwi I, Damayanto IPGP, Ridwan R, Handayani T, Leksonowati A (2018) Moringa oleifera distribution in Java and Lesser Sunda islands attributed with annual rainfall. Biosaintifika 10: 613-621. doi: 10.15294/biosaintifika.v10i3.16115

Saha P, Banerjee AK, Tripathi PP, Srivastava AK, Ray U (2020) A virus that has gone viral: Amino acid mutation in S protein of Indian isolate of coronavirus COVID-19 might impact receptor binding, and thus, infectivity. Biosci Rep 40: BSR20201312. doi: 10.1042/bsr20201312

Schrezenmeier E, Dorner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: Implication for rheumatology. Nat Rev Rheumatol 16: 155-156. doi: 10.1038/s41584-020-0372-x

Sharifi N, Souri E, Ziai AS, Amin G, Amanlou M (2013) Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay. Daru 21: 74. doi: 10.1186/2008-2231-21-74

Sliwoski G, Kothiwale S, Meiler J, Lowe Jr EW (2013) Computational methods in drug discovery. Pharmacol Rev 66: 334?395. doi: 10.1124/pr.112.007336

Su L, Ma X, Yu H, Zhang Z, Bian P, Han Y, Sun J, Liu Y, Yang C, Geng J, Zhang Z, Gai Z (2020a) The different clinical characteristics of corona virus disease cases between children and their families in China – the character of children with COVID-19. Emerg Microbes Infect 9: 707-713. doi: 10.1080/22221751.2020.1744483

Su J, Shen X, Ni Q, Zhao H, Cai J, Zhu B, Wu W, Lang G, Xu K, Sheng J (2020b) Infection of severe acute respiratory syndrome coronavirus 2 in a patient with AIDS. AIDS 34: 1575–1576. doi: 10.1097/QAD.0000000000002553

Sun J, Chen YT, Fan XD, Wang XY, Han QY, Liu ZW (2020) Advances in the use of chloroquine and hydroxychloroquine for the treatment of COVID-19. Postgrad Med 132: 604-613. doi: 10.1080/00325481.2020.1778982

Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW (2004) ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 279: 17996-18007. doi: 10.1074/jbc.M311191200

Vergara-Jimenez M, Almatrafi MM, Fernandez ML (2017) Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants (Basel) 6: 91. doi: 10.3390/antiox6040091

Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8: 1555-1572. doi: 10.2174/156802608786786624

Wang HD, Du GH, Liu A (2009) Evaluation for inhibitory effects of natural flavonoids on neuraminidases. Chinese J New Drugs 15: 1435-1439

WHO (2020) Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). World Health Organization, Geneva Switzerland

Wiese O, Zemlin AE, Pillay TS (2020) Molecules in pathogenesis: Angiotensin converting enzyme 2 (ACE2). J Clin Pathol 2020: 1-6. doi:10.1136/jclinpath-2020-206954

Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30: 343-355. doi: 10.1038/s41422-020-0305-x

Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y, Guo X (2020) Systmetic comparison of two animal-to-human transmitted human coronavirusses: SARS-CoV-2 and SARS-CoV. Viruses 12: 244. doi: 10.3390/v12020244

Zakaryan H, Arabyan E, Oo A, Zandi K (2017) Flavonoids: Promising natural compounds against viral infections. Arch Virol 162: 2539?2551. doi: 10.1007/s00705-017-3417-y

Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17: 259-260. doi: 10.1038/ s41569-020-0360-5