CONFIRMATION OF ENDOPHYTIC MICROBES CAUSING CONTAMINATION IN WATER SPINACH (Ipomoea aquatica Forssk.) TISSUE CULTURE

Main Article Content

Resa Sri Rahayu
Indriati
Masrukhin
Indira
Apriliana
Yeni

Abstract

Konfirmasi Mikroba Endofit Penyebab Kontaminasi pada Kultur Jaringan Kangkung (Ipomoea aquatica Forssk.)


Tanaman kangkung secara alami bersimbiosis dengan mikroba endofit, yang berpotensi menjadi kontaminan pada kultur jaringan kangkung karena berada di dalam jaringan dan sulit dijangkau saat proses sterilisasi eksplan. Tujuan penelitian ini adalah mengonfirmasi mikroba endofit penyebab kontaminasi pada kultur jaringan kangkung ‘Tetraploid’ sehingga dapat menjadi informasi awal untuk metode sterilisasi yang efektif. Sebanyak 14 sampel kontaminan pada media tanam kultur jaringan kangkung diisolasi dan diidentifikasi secara molekuler berdasarkan gen 16S rDNA untuk bakteri, daerah D1/D2 dari gen LSU rRNA untuk khamir, dan daerah ITS dari gen rDNA untuk jamur. Keragaman jenis mikroba yang teridentifikasi dibandingkan dengan keragaman jenis mikroba endofit dari jaringan tanaman kangkung yang ditanam pada media kultur jaringan tidak terkontaminasi mikroba, media kultur jaringan terkontaminasi mikroba, media tanam campuran tanah steril dan tidak steril, serta kangkung yang didapatkan dari pasar. Hasil penelitian ini mengonfirmasi bahwa khamir endofit dari kelompok Ustilaginaceae (basidiomycetous yeast) yang berasal dari jaringan tanaman kangkung sama dengan jenis kontaminan yang mengontaminasi media kultur jaringan kangkung ‘Tetraploid’. Khamir dari kelompok Ustilaginaceae (basidiomycetous yeast) tersebut juga merupakan mikroba paling dominan yang mengontaminasi media tanam kultur jaringan kangkung ‘Tetraploid’.


Keywords: Ipomoea aquatica, kultur jaringan, mikroba endofit, morfologi, pohon filogeni


Water spinach in nature lives in symbiosis with endophytic microbes, which have the potential to become contaminants in water spinach tissue culture because they are difficult to eliminate during the explant sterilization process. This study aimed to confirm endophytic microbes that cause contamination in the tissue culture of 'Tetraploid' water spinach so that it can provide initial information for an effective sterilization method. Fourteen contaminant samples in water spinach tissue culture media were isolated and identified molecularly based on the 16S rDNA gene for bacteria, the D1/D2 region of the LSU rRNA gene sequences for yeast, and ITS region of the rDNA gene for mold. The diversity of microbial species identified was compared with the diversity of endophytic microbial types from water spinach plant tissue grown on sterile tissue culture media, microbially contaminated tissue culture media, sterile and non-sterile soil mixed planting media, and water spinach obtained from the market. The results confirmed that endophytic yeast from Ustilaginaceae group (basidiomycetous yeast) derived from water spinach plant tissue was the same type of microbe that contaminated the 'Tetraploid' water spinach tissue culture media. The results gave new information that yeast from the Ustilaginaceae (basidiomycetous yeast) group was the most dominant microbe contaminating water spinach ‘Tetraploid’ tissue culture media. This group is endophytic yeast that lives within Ipomoea aquatica tissues.

Article Details

How to Cite
Rahayu, R. S., Ramadhani, I. ., Masrukhin, M., Riastiwi, I. ., Prawestri, A. D. ., & Yuliani, Y. . (2021). CONFIRMATION OF ENDOPHYTIC MICROBES CAUSING CONTAMINATION IN WATER SPINACH (Ipomoea aquatica Forssk.) TISSUE CULTURE. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 234-249. https://doi.org/10.29122/jbbi.v7i2.4381
Section
Research Articles

References

Abdalla MA, Matasyoh JC (2014) Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect 4: 257-270. doi: 10.1007/s13659-014-0038-y

Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117: 232-242. doi: 10.1016/j.chemosphere.2014.06.078

Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory Mycology. 4th edition. John Wiley & Sons Inc, New York

Ariyono RQ, Djauhari S, Sulistyowati L (2014) Keanekaragaman jamur endofit daun kangkung darat (Ipomoea reptans Poir.) pada lahan pertanian organik dan konvensional. J HPT 2: 19-28

Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res Int 24: 4322-4336. doi: 10.1007/s11356-015-4935-3

Biasetto CR, Somensi A, Figueiro FS, de Moraes LAB, Silva GH, Marx Young MC, da Silva Bolzani V, Araújo AR (2019) Diketopiperazines and arylethylamides produced by Schizophyllum commune, an endophytic fungus in Alchornea glandulosa. Eclet Quim J 44: 36-42. doi: 10.26850/1678-4618eqj.v44.3.2019.p36-42

Chauhan NM, Gutama AD, Aysa A (2019) Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC Microbiol 19: 172. doi: 10.1186/s12866-019-1547-y

Chen J, Zhang L, Jin Q, Su C, Zhao L, Liu X, Kou S, Wang Y, Xiao M (2017) Bioremediation of phenol in soil through using a mobile plant–endophyte system. Chemosphere 182: 194-202. doi: 10.1016/j.chemosphere.2017.05.017

Chitsa H, Mtaita T, Tabarira J (2014) Nutrient content of water spinach (Ipomoea aquatica) under different harvesting stages and preservation methods in Zimbabwe. Int J Biol Chem Sci 8: 854-861. doi: 10.4314/ijbcs.v8i3.2

de Errasti A, Novas MV, Carmarán CC (2014) Plant-fungal association in trees: insights into changes in ecological strategies of Peroneutypa scoparia (Diatrypaceae). Flora Morphol Distrib Funct Ecol Plants 209: 704-710. doi: 10.1016/j.flora.2014.07.006

de Melo Pereira GV, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63: 405-417. doi: 10.1007/s00248-011-9919-3

Dhooghe E, van Laere K, Eeckhaut T, Leus L, van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104: 359-373. doi: 10.1007/s11240-010-9786-5

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (NY) 39: 783-791. doi: 10.2307/2408678

Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wong MH (2017) Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ 583: 352-368. doi: 10.1016/j.scitotenv.2017.01.075

Hapsari RTY, Djauhari S, Cholil A (2014) Keanekaragaman jamur endofit akar kangkung darat (Ipomoea reptans Poir.) pada lahan pertanian organik dan konvensional. J HPT 2: 1–10

Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79: 293-320. doi: 10.1128/MMBR.00050-14

Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M (2018) Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: Phytoremediation advances in the field. J Environ Manage 224: 387-395. doi: 10.1016/j.jenvman.2018.07.057

Ilyas M, Rahmansyah M, Kanti A (2006) Seri Panduan: Teknik Isolasi Fungi. LIPI Press, Jakarta

Into P, Pontes A, Sampaio JP, Limtong S (2020) Yeast diversity associated with the phylloplane of corn plants cultivated in Thailand. Microorganisms 8: 80. doi: 10.3390/microorganisms8010080

Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72: 3832-3845. doi: 10.1128/AEM.02869-05

Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186: 496-513. doi: 10.1111/j.1469-8137.2010.03197.x

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160-1166. doi: 10.1093/bib/bbx108

Kaur M, Chadha P, Kaur S, Kaur A, Kaur R, Yadav AK, Kaur R (2018) Schizophyllum commune induced genotoxic and cytotoxic effects in Spodoptera litura. Sci Rep 8: 4693. doi: 10.1038/s41598-018-22919-0

Khunnamwong P, Jindamorakot S, Limtong S (2018) Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach. Fungal Biol 122: 785-799. doi: 10.1016/j.funbio.2018.04.006

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120. doi: 10.1007/BF01731581

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874. doi: 10.1093/molbev/msw054

Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. 73: 331-371. doi: 10.1023/A:1001761008817

Li C, Sarotti AM, Yang B, Turkson J, Cao S (2017) A new N-methoxypyridone from the co-cultivation of Hawaiian endophytic fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062. Molecules 22: 1166. doi: 10.3390/molecules22071166

Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54: 11-18. doi: 10.1007/s13225-012-0165-x

Liu Y, Zuo S, Xu L, Zou Y, Song W (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194: 1001-1012. doi: 10.1007/s00203-012-0836-8

López SMY, Pastorino GN, Franco MEE, Medina R, Lucentini CG, Saparrat MCN, Balatti PA (2018) Microbial endophytes that live within the seeds of two tomato hybrids cultivated in Argentina. Agronomy 8: 136. doi: 10.3390/agronomy8080136

Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4: 81-95. doi: 10.2174/187220810790069523

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014: ID 250693. doi: 10.1155/2014/250693

Oliveira RC, Davenport KW, Hovde B, Silva D, Chain PSG, Correa B, Rodrigues DF (2017) Draft genome sequence of sorghum grain mold fungus Epicoccum sorghinum, a producer of tenuazonic acid. 5: e01495. doi: 10.1128/genomeA.01495-16

Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28: 299-314. doi: 10.1111/1365-2435.12076

Quambusch M, Winkelmann T (2018) Bacterial endophytes in plant tissue culture: Mode of action, detection, and control. Methods Mol Biol 1815: 69-88. doi: 10.1007/978-1-4939-8594-4_4

Rahmi P, Witjaksono, Ratnadewi D (2019) Induksi poliploidi tanaman kangkung (Ipomoea aquatica Forssk.) kultivar Salina in vitro dengan oryzalin. J Biol Indones 15: 1-8. doi: 10.14203/jbi.v15i1.3760

Saad FNM, Lim FJ, Izhar TNT, Odli ZSM (2020) Evaluation of phytoremediation in removing Pb, Cd and Zn from contaminated soil using Ipomoea aquatica and Spinacia oleracea. IOP Conf Ser Earth Environ Sci 476: 012142. doi: 10.1088/1755-1315/476/1/012142

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425. doi: 10.1093/oxfordjournals.molbev.a040454

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467. doi: 10.1073/pnas.74.12.5463

Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9: 24. doi: 10.3389/fpls.2018.00024

Shukla ST, Habbu PV, Kulkarni VH, Jagadish KS, Pandey AR, Sutariya VN (2014) Endophytic microbes: A novel source for biologically/ pharmacologically active secondary metabolites. Asian J Pharmacol Toxicol 2: 1-16

Song Z, Kennedy PG, Liew FJ, Schilling JS (2016) Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol 31: 407-418. doi: 10.1111/1365-2435.12735

Srisuk N, Nutaratat P, Surussawadee J, Limtong S (2019) Yeast communities in sugarcane phylloplane. Microbiol 88: 353-369. doi: 10.1134/S0026261719030135

St?pniewska Z, Kuzniar A (2013) Endophytic microorganisms - Promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97: 9589-9596. doi: 10.1007/s00253-013-5235-9

Stokholm MS, Wulff EG, Zida EP, Thio IG, Néya JB, Soalla RW, G?azowska SE, Andresen M, Topbjerg HB, Boelt B, Lund OS (2016) DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen. Microbiol Res 191: 38-50. doi: 10.1016/j.micres.2016.05.004

Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4: 57. doi: 10.3390/jof4020057

Suh SO, Blackwell M, Kurtzman CP, Lachance MA (2006) Phylogenetics of Saccharomycetales, the ascomycete yeasts. Mycologia 98: 1006-1017. doi: 10.3852/mycologia.98.6.1006

Suhandono S, Kusumawardhani MK, Aditiawati P (2016) Isolation and molecular identification of endophytic bacteria from rambutan fruits (Nephelium lappaceum L.) cultivar Binjai. Hayati J Biosci 23: 39-44. doi: 10.1016/j.hjb.2016.01.005

Sukmadi RB (2012) Aktivitas fitohormon indole-3-acetic Acid (IAA) dari beberapa isolat bakteri rizosfer dan endofit. J Sains Teknol Indones 14: 221-227. doi: 10.29122/jsti.v14i3.930

Taguiam JD, Evallo E, Bengoa J, Maghirang R, Balendres MA (2020) Pathogenicity of Epicoccum sorghinum towards dragon fruits (Hylocereus species) and in vitro evaluation of chemicals with antifungal activity. J Phytopathol 168: 303-310. doi: 10.1111/jph.12893

Tyc O, Putra R, Gols R, Harvey JA, Garbeva P (2020) The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. MicrobiologyOpen 9: e00954. doi: 10.1002/mbo3.954

Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81: 55-83. doi: 10.1016/j.simyco.2015.10.004

Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99: 2955-2965. doi: 10.1007/s00253-015-6487-3

Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7: 12151. doi: 10.1038/ncomms12151

White TJ, Bruns TD, Lee SB, Taylor JW. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp. 315-322