PEMANFAATAN JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK MODEL PREDIKSI DERET WAKTU PASANG SURUT
Main Article Content
Abstract
Kebanyakan aktifitas yang berkaitan dengan laut sangat memerlukan data prediksi pasang surut. Hal ini menuntut adanya sistem prediksi dengan akurasi yang tinggi. Penerapan kecerdasan artifisial yang semakin meluas dengan berbagai keandalannya menginspirasi penelitian ini untuk mengaplikasikan model prediksi pasang surut menggunakan jaringan saraf tiruan. Dengan masukan data pasang surut tujuh hari sebelumnya untuk memprediksi pasang surut 6 dan 12 jam ke depan dapat modelkan menggunakan jaringan sarat tiruan berbasis metode pembelajaran propagasi balik. Hasilnya, unjuk kerja pengujian model prediksi sangat memuaskan dengan rata-rata akurasi di atas 90% serta nilai MSSE(mean sum square error) yang rendah.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
B.L. Meenaa , Dr. J.D. Agrawalb. (2015) ‘Tidal Level Forcasting Using ANN’, 8th International Conference on Asian and Pacific Coasts 2015, doi: 10.1016/j.proeng.2015.08.332
C hakraborty K ., Melhotra K ., Mohan C .K ., and R anka S . (1992) ‘Forecasting the behaviour of multivariate time series using neural network’, Neural Networks 5(6)961-970.
Rasel, Uddin, and Haroon. (2018) ‘Application of DNN for Predicting River Tide Level’, 2nd Int. Conf. on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh
S. Hayman, "The McCulloch-Pitts model," in IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, vol. 6, pp. 4438-4439 vol.6.
Wang, Yuan, and Tan.(2015) ‘Application of BP Neural Network in Monitoring of Ocean Tide Level’, International Conference on Computational Intelligence and Communication Networks 2015, doi:10.1109/CICN.2015.238
Widaryanto and Kusumoputro, "Modeling and Designing Direct Inverse Control Using Back-propagation Neural Network for Skid Steering Boat Model," 2019 IEEE International Conference on Innovative Research and Development (ICIRD), Jakarta, Indonesia, 2019, pp. 1-5, doi: 10.1109/ICIRD47319.2019.9074761.
Winter and Widrow, "MADALINE RULE II: a training algorithm for neural networks," in IEEE 1988 International Conference on Neural Networks, 1988, pp. 401-408 vol.1.
Yen, P-H, Jan, C-D, Lee, Y-P and Lee, H-F (1996) Application of Kalman filter to short-term tide level prediction, .J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 122(5), pp 226- 231.