PENERAPAN TEKNOLOGI MODIFIKASI CUACA (TMC) UNTUK MENGATASI KABUT ASAP AKIBAT KEBAKARAN LAHAN DAN HUTAN DI PROVINSI JAMBI SEPTEMBER-OCTOBER 2012

Djazim Syaifullah *)

Intisari

Abstract
The implementation of Weather Modification Technologies to cope with the disaster and smoke from forest fires in Jambi has been done on 07 September to 06 October 2012. The operation was supported by 1 (one) unit of CASA 212-200 aircraft and has a flight seeding for 33 times. During the activities, rainfall occur almost every day at various places in the province of Jambi with varying intensity. Generally, the hotspot condition was decreased compared with the period before the activities. Fluctuations in the number of hotspots that occur due to fluctuations in the presence of clouds and land burning activities. At the end of the activity, the number of hotspots in Jambi area were much reduced, but the condition is still considered fairly dense smoke on some days thought to have come from the southern province of Jambi, cloud seeding operation was continued in South Sumatra province.

Kata Kunci : Bencana asap, Kebakaran lahan dan hutan, TMC.

1. PENDAHULUAN

Berdasarkan pemantauan hotspot dari data satelit National Oceanic and Atmospheric Administration (NOAA), terhitung sejak tanggal 1 Januari 2012 sampai dengan tanggal akhir Agustus 2012 di wilayah Indonesia terpantau hotspot mencapai sekitar 21 ribu titik yang sebarannya terkonsentrasi di wilayah Sumatera, Kalimantan dan Sulawesi.

Dengan memperhatikan pola historis kejadian hotspot di wilayah Sumatera dan Kalimantan, yang biasanya mencapai puncaknya pada periode bulan Agustus, September dan Oktober, Badan Nasional Penanggulangan Bencana (BNPB) bekerjasama dengan Unit Pelaksana Teknis (UPT) Hujan Buatan – Badan Pengkajian dan Penerapan Teknologi (BPPT) mengambil langkah antisipasi dengan
melakukan operasi pemadaman kebakaran lahan dan hutan dari udara melalui pelaksanaan operasi penerapan Teknologi Modifikasi Cuaca (TMC) atau yang sering dikenal dengan istilah hujan buatan.

Teknologi Modifikasi Cuaca (TMC) adalah suatu bentuk upaya manusia dalam mengintervensi proses di dalam awan hujan (tenutama awan jenis Cumulus). TMC memodifikasi proses tumbukan dan penggabungan butir air di dalam awan sehingga proses tumbukan dan penggabungan dapat dipercepat dengan menambahkan CCN (Cloud Condensation Nuclei) dalam bentuk garam halus (superfine) ke dalam awan yang akhirnya dapat meningkatkan intensitas curah hujan. Hujan yang turun di lokasi kebakaran dan sekitarnya diharapkan dapat membantu memadamkan sejumlah hotspot dan menipiskan kabut asap sehingga meningkatkan visibility (jarak pandang) yang sering mengganggu kesehatan dan aktivitas penerbangan udara.

Secara regulasi, peranan TMC untuk mitigasi bencana kebakaran lahan dan hutan telah tertuang dalam Instruksi Presiden Republik Indonesia Nomor 16 Tahun 2011 tentang Peningkatan Pengelolaan Kebakaran Lahan dan hutan, dimana Presiden RI memberikan instruksi kepada Menteri Riset dan Teknologi untuk melakukan koordinasi dalam pemberian bantuan penanganan kebakaran lahan dan hutan dengan menggunakan teknologi pembuatan hujan buatan.

Pelaksanaan operasi penerapan TMC di wilayah Sumatera tahun 2012 difokuskan di Provinsi Riau dan Propinsi Jambi, untuk Propinsi Jambi penempatan Posko TMC bertempat di wilayah Bandara Sultan Thaha Syaifuddin Jambi yang dilakukan selama 30 (tiga puluh) hari dimulai tanggal 07 September 2012. Pelaksanaan operasi ini didukung oleh 1 (satu) unit pesawat CASA 212-200millik Tentara Nasional Indonesia Angkatan Darat (TNI-AD).

Tulisan ini melakukan kajian hasil pelaksanaan Teknologi Modifikasi Cuaca (TMC) untuk mengatasi asap akibat kebakaran lahan dan hutan di Propinsi Jambi pada bulan September – Oktober 2012, selain kajian hotspot dan jarak pandang (visibility).

1.1. Daerah Kerja

Daerah sasaran (target operasi) adalah seluruh wilayah Propinsi Jambi, seperti yang tergambarkan dalam Gambar 1 berikut ini

![Gambar 1. Peta Wilayah Kerja Penerapan TMC untuk menanggulangi asap akibat kebakaran lahan dan hutan di Propinsi Jambi (diwarnai)](image)

1.2. Kondisi Cuaca Daerah Target

Faktor lain yang berpengaruh terhadap pembentukan awan hujan di wilayah Jambi adalah fenomena ENSO (El Niño Southern Oscillation) dan MJO (Madden Julian Oscillation) serta gangguan tropis berupa depresi tropis (tropical depression) hingga siklon tropis (tropical cyclon) yang terjadi di Pasifik bagian Barat hingga Laut Cina Selatan maupun di Samudera Hindia sebelah barat.
Sumatera. Sirkulasi monsun Asia-Australia, Daerah Pertemuan Angin Antar Tropis atau Inter Tropical Convergence Zone (ITCZ) yang merupakan daerah pertumbuhan awan, serta kondisi suhu permukaan laut di sekitar wilayah Indonesia juga berpengaruh terhadap cuaca dan iklim di wilayah Sumatera Selatan.

Perairan di sebelah Selatan Jawa hingga Tenggara Sumatera mengalami pendinginan dibandingkan dengan nilai rata-ratanya. Anomali negatif suhu muka laut di perairan tersebut dijumpai selama bulan September 2012 (Gambar 2 bawah), yang menyebabkan kurangnya aktivitas konveksi di wilayah Jambi.

Badai tropis “JELAWAT” (21 September – 2 Oktober) juga sudah mencapai tahap super typhoon dengan pusat tekanan rendah mencapai 918 mbar dengan kecepatan angin mencapai 350 km/jam. Pada akhir bulan September sampai awal Oktober 2012 muncul siklon tropis “GAEMI” dengan pusat tekanan rendah mencapai 989 mbar dan kecepatan angin mencapai 130 km/jam. Gambar 4 berikut adalah salah satu contoh track typhoon dan prediksi beberapa hari ke depan.

Setelah memasuki bulan Oktober 2012, kondisi menjadi berubah dimana suhu permukaan laut di sekitar Sumatra Hindia sebelah barat Sumatera Bagian Selatan hingga Selatan Jawa anomali suhunya mulai menghangat bahkan ada

yang mencapai +1°C. Kondisi ini terus berfluktuatif sehingga memudahkan untuk terjadinya pembentukan awan-awan di Jambi secara lokal sehingga hilangnya ganguan tropis.

2. PELAKSANAAN KEGIATAN

Mengingat pertumbuhan awan di wilayah daerah target relatif lambat akibat adanya kabut asap, maka penerbangan pertama dilaksanakan sekitar jam 12.30 - 14.30 WIB. Penerbangan sorti kedua direncanakan sekitar jam 15.30 - 17.00 WIB. Penerbangan direncanakan 2 (dua) sorti setiap hari, namun realisasinya tergantung kondisi cuaca yang setiap saat selalu berubah. Penerbangan sorti terakhir diupayakan landing tidak melebihi jam 17.30 WIB (30 menit sebelum sunset).

Daerah penyemaian dan lintasan pesawat saat melakukan penyemaian selalu direkom

<table>
<thead>
<tr>
<th>Jumlah Sorti</th>
<th>Daerah Seeding</th>
<th>Total Bahan Semai (Kg)</th>
<th>Jumlah Hotspot selama kegiatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Kabupaten Batang Hari (11), Kabupaten Tanjung Jabung Barat (7), Kabupaten Tanjung Jabung Timur (10), Kabupaten Muara Jambi (5), Kabupaten Sarolangun (3), Nipah Panjang (4), Tanjung (3), Muara Bulian (2), Muara Sabak (2), Ketopati (1), Dusun Mudo (1), Muara Tembesi (1), Kabupaten Tebo (1), Tebing Tinggi (1), Tempino Kecil (1), Kuala Betara (1), Kabupaten Muaro Bungo (1), Kuala Tungkal (1)</td>
<td>32.000</td>
<td>Tebo (99), Bungo (28), Tanjung Jabung Barat (46), Tanjung Jabung Timur (83), Muaro Jambi (70), Sarolangun (83), Merangin (32), Batanghari (37), Kerinci (1) dan Sungai Penuh (0)</td>
</tr>
</tbody>
</table>
3. HASIL DAN PEMBAHASAN

Hasil kegiatan yang meliputi informasi kondisi titik panas (hotspot), kejadian hujan di daerah target, dan visibility di Jambi yang terjadi selama berlangsungnya kegiatan TMC dibahas dalam bab ini. Data hotspot yang digunakan bersumber dari Departemen Kehutanan RI, sementara informasi kejadian hujan hanya berdasarkan data kualitatif yang berhasil terkumpul di Posko selama berlangsungnya kegiatan TMC serta dari data TRMM, sedangkan data visibility diperoleh dari stasiun BMKG Bandara Sultan Thaha jambi.

3.1. Informasi Hotspot (Titik Panas)

3.1.1. Analisis Temporal Hotspot

Sebelum kegiatan TMC dimulai, keberadaan hotspot di Propinsi Jambi sudah cukup banyak.
jumlaunya, ditambah dengan lokasi Jambi yang terletak di daerah konvergensi karena angin tenggara di wilayah ini menyebabkan kualitas udara di wilayah Propinsi Jambi mengalami penurunan akibat pekatnya kabut asap. Namun selama sepuluh hari pertama kegiatan jumlah hotspot berkurang cukup drastis. Pada tanggal 17 sampai dengan 19 September 2012 akumulasi hotspot mencapai jumlah terbanyak dikarenakan adanya aktivitas pembakaran lahan dan hutan yang masih akibat kondisi kering yang disebabkan oleh munculnya badai tropis SANBA.

Secara administratif, sebaran hotspot terjadi pada hampir semua kabupaten di wilayah Propinsi Jambi. Selama operasi TMC tanggal 07 September – 06 Oktober 2012, di Kabupaten Tebo terdapat hotspot yang paling banyak (99 titik) disusul oleh Kabupaten Sarolangun (83), Kabupaten Muaro Jambi (70), Kabupaten Tanjung Jabung Timur (63), Kabupaten Tanjung Jabung Barat (46), Kabupaten Batang Hari (37), Kabupaten Merangin (32) dan Kabupaten Bungo (28).

Jumlah hotspot per kabupaten di wilayah Jambi selama kegiatan TMC disajikan dalam Gambar 7.

Kabupaten Muaro Jambi dan Tanjung Jabung Timur yang sebagian tanahnya berupa gambut dan posisinya dekat dengan kota Jambi mempunyai pengaruh yang kuat terhadap kepekatan asap di kota Jambi dan jarak pandang di bandara Sultan Thaha Jambi.

Gambar 7. Total keberadaan hotspot per Kabupaten di Propinsi Jambi, Selama kegiatan TMC (07 September – 06 Oktober 2012)

3.1.2. Analisis Spasial Hotspot

3.2. Informasi Hujan

Pengukuran curah hujan selalu dilakukan pada saat pelaksanaan kegiatan TMC untuk mengetahui hasil pelaksanaan TMC. Selain jumlah hotspot, visibiliti dan indeks kualitas udara (IKU), data curah hujan merupakan salah satu parameter yang digunakan dalam evaluasi kegiatan Teknologi Modifikasi Cuaca karena dengan adanya kejadian
hujan diharapkan terjadi pengurangan kepekaan asap di atmosfer dan terjadi proses pembasahan permukaan tanah sehingga mengurangi potensi kebakaran lahan dan hutan.

3.2.1. Kejadian Hujan Wilayah Jambi

Selama kegiatan dilakukan pencatatan informasi kejadian hujan kuantitatif di stasiun penakar yang dikelola oleh stasiun klimatologi BMKG Propinsi Jambi. Sebanyak 24 (dua puluh empat) buah stasiun hujan yang tersebar di daerah Propinsi Jambi yang pengamatannya dikoordinasikan dengan stasiun Meteorologi Bandara Sultan Thaha dan BMKG wilayah Jambi. Pencatatan curah hujan dilakukan setiap hari mulai jam 00 UTC atau jam 07.00 pagi hari. Informasi curah hujan selengkapnya dapat dilihat pada Gambar 9.

Gambar 9. Grafik curah hujan wilayah Jambi selama periode TMC (sumber: BMKG, Jambi)
3.2.2. Informasi Spasial Curah Hujan

![Isoleh dan Hotspot 07 Sep. sd. 06 Okt. 2012](image)

Gambar 10. Distribusi spasial curah hujan Propinsi Jambi dari data TRMM selama periode TMC (07 September – 06 Oktober 2012 (titik-titik merah adalah distribusi hotspot untuk periode yang sama)

3.2.3. Jarak Pandang (Visibility)

Selama kegiatan TMC, pengamatan visibility bandara dilakukan oleh BMKG Propinsi Jambi yang berada di Bandara Sultan Thaha. Pengamatan dilakukan setiap jam mulai jam 07.00 sampai dengan 17.00 WIB. Grafik visibility selama kegiatan operasi TMC selengkapnya dapat dilihat pada Gambar 11.

Pada gambar 11, garis warna biru menunjukkan rerata visibility antara jam 07.00 sampai dengan jam 10.00 WIB dimana pada pagi hari aktifitas konveksi ataupun dinamika atmosfer belum cukup kuat. Warna merah menunjukkan rerata visibility antara jam 11.00 sampai dengan jam 17.00 WIB dimana aktifitas konveksi sudah cukup kuat.

Gambar 11. Grafik rekapitulasi visibility di Bandara Sultan Thaha tanggal 07 September s.d. 06 Oktober 2012, warna biru adalah rerata jam 07.00-10.00 WIB; warna merah adalah rerata jam 11.00-17.00 WIB

4. KESIMPULAN

Selama kegiatan TMC, hujan terjadi hampir setiap hari di berbagai tempat di wilayah Propinsi Jambi dengan intensitas yang bervariasi, sehingga diharapkan dapat digunakan untuk pembasahan tanah sehingga mengurangi jumlah hotspot.

Secara umum, kondisi hotspot selama kegiatan TMC mengalami penurunan dibandingkan dengan periode sebelum dilaksanakannya TMC (kecuali pada tanggal 17 sd. 19 September 2012). Namun demikian, terdapat fluktuasi jumlah hotspot yang terjadi akibat fluktuasi keberadaan awan dan aktivitas pembakaran lahan.

Pada akhir kegiatan, jumlah hotspot di wilayah Jambi sudah jauh berkurang, tetapi karena kondisi asap masih dirasa cukup pekat pada beberapa hari tertentu yang diduga berasal dari sebelah selatan ditanjuk dari Propinsi Sumatera Selatan.

DAFTAR PUSTAKA

Matthew C. Wheeler and Harry H. Hendon. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, American Meteorological Society, 2004

World Meteorological Organization, ElNino / La Nina Updated, June 2012.