APLIKASI SATELIT DALAM MENGESTIMASI EVAPORASI DI DAERAH WADUK (STUDI KASUS: WADUK SAGULING-JAWA BARAT)

Rusmawan Suwarman, Dinda Mahardita, I Dewa Gede A. Junnaedhi

Abstract


Estimasi evaporasi di daerah waduk menggunakan metode empiris dengan input data satelit dilakukan untuk mengatasi masalah ketersediaan data meteorologi dari observasi permukaan. Data satelit berupa Land Surface Temperature dari satelit Himawari dan profil atmosfer dari satelit MODIS digunakan untuk memperoleh informasi parameter temperatur, kelembapan relatif dan radiasi matahari untuk mengestimasi besaran evaporasi di daerah waduk. Metode empiris yang digunakan antara lain adalah Blaney-Criddle, Kharuffa, Hargreaves, Schendel dan Schendel yang dimodifikasi (Modified Schendel). Hasil estimasi evaporasi dibandingkan terhadap evaporasi acuan yang dihitung menggunakan metode kombinasi (Penman) dengan input parameter meteorologi hasil observasi. Observasi dilakukan menggunakan Automatic Weather Station di dua titik pengamatan di Waduk Saguling. Hasil penelitian menunjukkan estimasi evaporasi waduk dengan input data satelit dapat dilakukan dengan metode yang ada namun diperlukan modifikasi. Metode estimasi evaporasi waduk yang terbaik adalah Modified Schendel, namun belum bisa menunjukkan variasi spasial yang sesuai observasi. Penggunaan regresi Linier Berganda dan menambahkan parameter radiasi matahari pada Modified Schendel, didapatkan suatu persamaan yang baik secara statistik dan dapat menunjukkan variasi spasial evaporasi di Waduk Saguling yang sesuai observasi.


Keywords


Evaporasi, Himawari, MODIS, Satelit, Waduk

Full Text:

PDF

References


Borbas, E.E., Seemann, S.W., Kern, A., Moy L., Li, J., Gumley, L., Menzel, W.P. (2011). Modis Atmospheric Profile Retrieval Algorithm Theoretical Basis Document Collection 6. University of Wisconsin-Madison.

Freitas, S.C., Trigo, I.F., Bioucas-Dias, J.M., Göttsche, F.M. (2010). Quantifying the Uncertainty of Land Surface Temperature Retrievals from SEVIRI/Meteosat, IEEE Transactions on Geoscience and Remote Sensing, 48(1), 523-534. doi: 10.1109/TGRS.2009.2027697.

Granger, R.J., Hedstrom, N. (2010). Controls on Open Water Evaporation. Hidrology and Earth System Sciences, 7, 2709-2726. doi: 10.5194/hessd-7-2709-2010

Jabloun, M., Sahli, A. (2008). Evaluation of FAO-56 Methodology for Estimating Reference Evapotranspiration Using Limited Climatic Data: Application to Tunisia. Agricultural Water Management, 95(6), 707-715. doi: 10.1016/j.agwat.2008.01.009

Jensen, M.E. (2010). Estimating Evaporation from Water Surfaces. CSU/ARS Evapotranspiration Workshop, Fort Collins, CO, 15-Mar-2010.

Khobragade, S.D., Semwal P., Kumar, A.R.S., Nainwal, H.C. (2016). Significance of Evaporation in Water Availability of Shallow Sub-tropical Lake in India. Octa Journal of Environmental Research, 4(3), 252-263.

Lee, S.J., Ahn, M.H., Chung, S.R. (2017). Atmospheric Profile Retrieval Algorithm for Next Generation Geostationary Satellite of Korea and Its Application to the Advanced Himawari Imager. Remote Sensing, 9(12), 1294. doi:10.3390/rs9121294

Lopez, G., Batlles, F.J. (2014). Estimating Solar Radiation from MODIS Data. Energy Procedia, 49, 2362-2369.

Maeda, E.E., Wiberg, D.A., Pellikka, P.K.E. (2011). Estimation Reference Evapotranspiration Using Remote Sensing and Empirical Models in Region with Limited Ground Data Availability in Kenya. Applied Geography, 31(1). doi: 10/1016/j.apgeog.2010.05.011

Penman, H.L. (1948). Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of Royal Society of London, A193, 120-145. doi: 10.1098/rspa.1948.0037

Penman, H.L. (1956). Evaporation: An Introductory Survey. Netherlands Journal of Agicultural Science, 4, 9-29.

Ramamurthy, P., Bou-Zeid, E. (2014). Contribution of Impervious Surfaces to Urban Evaporation. Water Resources Reseach, 50(4). doi: 10.1002/2013WR013909.

Sofan, P., Sugiharto, T., Hasnaeni. (2007). Relative Humidity Estimation Based on MODIS Precipitable Water for Supporting Spatial Information over Java Island. International Journal of Remote Sensing and Earth Sciences, 4, 33-45. doi: 10.30536/j.ijreses.2007.v4.a1215

Suwarman, R., Junnaedhi I.D.G.A., Novitasari. (2018). A Study on Characteristics and Comparison of Evaporation Estimation Methods in Bandung. Makalah (belum diterbitkan).

Taylor, K.E. (2001). Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. doi: 10.1029/2000JD900719

Vercauteren, N., Bou-Zeid, E., Huwald, H., Parlange, M.B., Brutsaert, W. (2009). Estimation of Wet Surface Evaporation from Sensible Heat Flux Measurements. Water Resources Research, 45(6). doi: 10.1029/2008WR007544

Xu, C.Y. Singh, V.P. (1998). Dependence of Evaporation on Meteorological Variables at Different Time-scales and Intercomparison of Estimation Methods. Hydrological Processes, 12(3), 429–442. doi: 10.1002/(SICI)1099-1085(19980315)12:3<429::AID-HYP581>3.0.CO;2-A

Xu, C.Y. Singh, V.P. (2001). Evaluation and Generalization of Temperature-based Methods for Calculating Evaporation. Hydrological Processes, 15(2), 305– 319. doi: 10.1002/hyp.119

Zotarelli, L., Dukes, M.D., Romero, C.C., Migliaccio, K.W., Morgan, K.T. (2015). Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Agricultural and Biological Engineering Departement, UF/IFAS Extention




DOI: http://dx.doi.org/10.29122/jstmc.v19i2.3138

Refbacks

  • There are currently no refbacks.


JSTMC is indexed by

One Search Indonesia
OCLC WorldcatCrossrefIPISinta
    

____________________________________________________________________________________________________________________________________________________

Copyright of Jurnal Sains & Teknologi Modifikasi Cuaca (JSTMC) (p-ISSN:1411-4887; e-ISSN:2549-1121)

Web
Analytics VISITOR STATISTICS