PEMANFAATAN SKEMA DAYTIME MICROPHYSICS RGB HIMAWARI 8 UNTUK MENDETEKSI AWAN CUMULUS POTENSIAL DALAM KEGIATAN TEKNOLOGI MODIFIKASI CUACA

Bony Septian Pandjaitan, Asri Rachmawati, Rahmat Hidayat, Samba Wirahma, Adinda Dara Vahada

Abstract


Intisari

Awan cumulus potensial, dalam kegiatan Teknologi Modifikasi Cuaca (TMC) merupakan awan target semai untuk menghasilkan hujan. Selama ini, penentuan kemunculan awan cumulus potensial biasanya didasarkan pada pengamatan radar cuaca dan pengamatan kanal tunggal satelit maupun beberapa kombinasi kanal satelit yang terpisah-pisah. Keberadaan Satelit Geostasioner Himawari 8 dengan frekuensi observasi tiap 10 menit dan memiliki banyak kanal panjang gelombang menawarkan potensi baru untuk mengamati dinamika awan. Pada artikel ini, penulis mencoba menggunakan skema daytime microphysics RGB Himawari 8 untuk mendeteksi kemunculan dan perkembangan awan cumulus potensial pada wilayah TMC di Kalimantan Barat pada bulan Agustus 2018. Berdasarkan hasil penelitian, terlihat bahwa terdapat karakter awan cumulus potensial seperti yang ditunjukkan oleh hasil klasifikasi dari skema daytime microphysics RGB Himawari 8 pada rute semai pesawat TMC. Selain itu, selama 4 hari kegiatan TMC, terlihat bahwa skema daytime microphysics RGB Himawari 8 dapat mendeteksi awal kemunculan awan cumulus potensial dengan selang waktu 1 hingga 2 jam lebih awal sebelum pesawat TMC terlihat sampai ke lokasi awan cumulus potensial tersebut. Sehingga, skema daytime microphysics RGB Himawari 8 bisa dicoba sebagai panduan informasi pelengkap data radar cuaca bagi pesawat TMC untuk menentukan lokasi awan cumulus potensial.

 

Abstract

Potential cumulus clouds, in Weather Modification Technology (TMC) activities are seedling cloud targets to produce rain. During this time, the determination of the appearance of a potential cumulus cloud is usually based on weather radar observations and observations of single satellite channels as well as several separate satellite channel combinations. The existence of the Himawari 8 Geostationary Satellite with an observation frequency every 10 minutes and has many wavelength channels offers new potential for observing cloud dynamics. In this paper, the author tried to use the Himawari 8 RGB daytime microphysics scheme to detect the emergence and development of potential cumulus clouds in the TMC region in West Kalimantan in August 2018. Based on the research results, it appears that there are potential cumulus cloud character traits, as shown by the classification results of the scheme daytime microphysics RGB Himawari 8 on the TMC aircraft seedling route. In addition, during the five days of TMC activities, it was seen that the Himawari 8 RGB microphysics daytime scheme could detect the beginning of the appearance of potential cumulus clouds at intervals of 1 to 2 hours before the TMC aircraft was seen up to the location of the potential cumulus clouds. Thus, the Himawari 8 microphysics RGB daytime scheme can be tried as a supplementary information guide on weather radar data for TMC aircraft to determine the location of potential cumulus clouds.


Keywords


Cumulus, Modifikasi Cuaca, Daytime Microphysics RGB, Satelit Himawari 8

Full Text:

PDF

References


Arifian, J. (2002). Kajian Kegiatan Modifikasi Cuaca di Catchment Area Towuti, Sulawesi Selatan. Jurnal Sains & Teknologi Modifikasi Cuaca, 3(2), 83-89.

Comet (2013). Multispectral Satellite Aplications: RGB Product Explained. (https://www.meted.ucar.edu/training_module.php?id=568#.XjoJz3duLg8)

Harsoyo, B. (2012). Pemanfaatan Teknologi Modifikasi Cuaca untuk Penanggulangan Bencana Asap Kebakaran Lahan dan Hutan. Jurnal Sains & Teknologi Modifikasi Cuaca, 13(2), 47-50. doi: 10.29122/jstmc.v13i2.2571

Haryanto, U. (2000). Teknologi Modifikasi Cuaca yang Efektif dan Efisien. Jurnal Sains & Teknologi Modifikasi Cuaca, 1(1), 9-18.

JMA. (2015). Himawari User’s Guide. (https://www.jma-net.go.jp/msc/en/support/index.html)

Lensky, M., Rosenfeld, D. (2008). Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmospheric Chemistry and Physics, 8, 6739–6753. doi: 10.5194/acp-8-6739-2008

Renggono, F. (2015). Analisis Kemunculan Awan Hujan Berdasarkan Jenisnya untuk Mendukung Kegiatan Modifikasi Cuaca. Jurnal Sains & Teknologi Modifikasi Cuaca, 16(2), 83-89. doi: 10.29122/jstmc.v16i2.1050

Seto, T.H. (2000). Peranan Bahan Semai Higroskopis dalam Penyemaian Awan. Jurnal Sains & Teknologi Modifikasi Cuaca, 1(1), 19-26.

Syaifullah, M.D. (2011). Potensi Atmosfer dalam Pembentukan Awan Konvektif pada Pelaksanaan Teknologi Modifikasi Cuaca di DAS Kotopanjang dan DAS Singkarak 2010. Jurnal Sains & Teknologi Modifikasi Cuaca, 12(1), 9-16. doi: 10.29122/jstmc.v12i1.2185

Syaifullah, M.D. (2012). Penerapan Teknologi Modifikasi Cuaca (TMC) untuk Mengatasi Defisit Inflow PLTA Bakaru Periode 15 Februari s.d 03 Maret 2012. Jurnal Sains & Teknologi Modifikasi Cuaca, 13(1), 25-34. doi: 10.29122/jstmc.v13i1.2207

Syaifullah, M.D., Nuryanto, S. (2016). Pemanfaatan Data Satelit GMS Multi Kanal untuk Kegiatan Teknologi Modifikasi Cuaca. Jurnal Sains & Teknologi Modifikasi

Cuaca, 17(2), 47-55. doi: 10.29122/jstmc.v17i2.525

Tanaka, Y. (2009). SATAID-Powerful Toolfor Satellite Analysis. RSMC Tokyo-Typhoon Center, Japan Meteorology Agency (JMA).

Wallace, J.M., Hobbs, P.V. (2005). Atmospheric Science: An Introductory Survey, 2nd edition. Washington: Elsevier.

Wirahma, S., Seto, T.H., Athoillah, I. (2014). Pemanfaatan Teknologi Modifikasi Cuaca untuk Perkebunan Kelapa Sawit. Jurnal Sains & Teknologi Modifikasi Cuaca, 15(1), 39-47. doi: 10.29122/jstmc.v15i1.2656




DOI: https://doi.org/10.29122/jstmc.v20i2.3873

Refbacks

  • There are currently no refbacks.


JSTMC is indexed by

One Search Indonesia
OCLC WorldcatCrossrefIPISinta
    

____________________________________________________________________________________________________________________________________________________

Copyright of Jurnal Sains & Teknologi Modifikasi Cuaca (JSTMC) (p-ISSN:1411-4887; e-ISSN:2549-1121)

Web
Analytics VISITOR STATISTICS