PREDIKSI HUJAN BULANAN PADA PERIODE ENSO (El NINO SOUTHERN OSCILLATION) MENGGUNAKAN ANFIS (ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM) DI BANJARMANGU, BANJARNEGARA
Main Article Content
Abstract
Akurasi prediksi curah hujan yang tinggi diperlukan untuk mendapatkan informasi yang tepat dan bermanfaat untuk tindakan mitigasi bencana alam oleh masyarakat. Untuk mendapatkan akurasi yang tinggi diperlukan variabel prediktor yang secara fisis terkait erat dengan curah hujan dan dapat menangkap pola anomali curah hujan akibat El Ni?o Southern Oscillation (ENSO). Total Column Water (TCW) sebagai variabel prediktor yang dipilih merupakan potensi uap air di atmosfer yang berpeluang menjadi hujan yang jatuh di permukaan bumi. Data TCW merupakan data reanalisis Model Sirkulasi Global (Global Circulation Model) yang diambil dari European Centre for Medium-Range Weather Forecasts (ECMWF). Analisis korelasi dilakukan untuk mendapatkan tingkat keterhubungan antara prediktor dengan curah hujan. Model prediksi Adaptive Neuro Fuzzy Inference System (ANFIS) digunakan untuk memprediksi curah hujan yang bersifat chaotic. Hasil penelitian menunjukkan pola klimatologis prediktor TCW sesuai pola curah hujan klimatologis dengan kekuatan relasi (r) 0,79. Hasil penelitian menunjukkan pola klimatologis prediktor TCW mengikuti pola curah hujan klimatologis dengan kekuatan relasi r(0,79) pada skala bulanan dan r(0,73) pada skala dasarian. Korelasi antara prediksi dan curah hujan observasi sebesar 0,82. Korelasi paling rendah pada saat terjadi pola Normal, El Ni?o dan La Ni?a pada tahun 2016 yakni 0,69, diikuti tahun 2014 saat Fase Normal dan El Ni?o sebesar 0,77, dan saat El Ni?o dominan mencapai korelasi tertinggi yaitu 0,93 di tahun 2015. Pada prediksi hujan skala dasarian menunjukkan tingkat keandalan yang tidak jauh berbeda dengan prediksi hujan bulanan dengan nilai r(0,65) pada periode La Ni?a dan r(0,80) pada periode El Ni?o.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d). Each author must sign the copyright transfer statement. The article will not be published unless this form has been signed and received.
OPEN ACCESS POLICY
Jurnal Sains & Teknologi Modifikasi Cuaca provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JSTMC by BBTMC-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JSTMC
References
Aldrian, E., Susanto, R.D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology: A Journal of the Royal Meteorological Society. 23, 1435-1452. doi: 10.1002/joc.950
Bordi, I., De Bonis, R., Fraedrich, K., Sutera, A. (2015). Interannual variability patterns of the world’s total column water content: Amazon River basin. Theoretical and Applied Climatology. 122,441-455. doi: 10.1007/s00704-014-1304-y
Chang, C.-P., Wang, Z., McBride, J., Liu, C.-H. (2005). Annual Cycle Of Southeast Asia—maritime Continent Rainfall And The Asymmetric Monsoon Transition. Journal of climate. 18,287-301. doi: 10.1175/JCLI-3257.1
Deliang, C., Inger, H. (2008). Empirical-statistical Downscaling. World Scientific Publishing Company.
Durai, V., Bhowmik, S., Hatwar, H. (2007). Distribution Of Precipitable Water Contents Over Indian Monsoon Region. Mausam. 58,241.
ECMWF. (2020). Total Column Water. https://apps.ecmwf.int/codes/grib/param-db/?id=137 (accessed 15 Januari 2020).
Hamada, J.-I., Mori, S., Kubota, H., Yamanaka, M.D., Haryoko, U., Lestari, S., Sulistyowati, R., Syamsudin, F. (2012). Interannual Rainfall Variability Over Northwestern Jawa And Its Relation To The Indian Ocean Dipole And El Niño-southern Oscillation Events. SOLA. 8,69-72. doi: 10.2151/sola.2012-018
Hidayat, R., Ando, K., Masumoto, Y., Luo, J. (2016). Interannual variability of rainfall over Indonesia: Impacts of ENSO and IOD and their predictability. IOP Conference Series: Earth and Environmental Science: IOP Publishing, 31(1). doi: 10.1088/1755-1315/31/1/012043
Hidayat, R., Prasetyaningtiyas, G.A. (2018). Pemodelan Stabilitas Lereng Regional berdasarkan Kondisi Geohidrologi (Studi Kasus Longsor Pangkalan-Sumatera Barat). Seminar Nasional Teknik Sipil 2018.
Irawan, A., Virgianto, R., Safril, A., Gustono, S., Putranto, N. (2019). Rainfall Threshold And Soil Moisture Indexes For The Initiation Of Landslide In Banjarmangu Sub-district, Central Java, Indonesia. IOP Conference Series Earth and Environmental Science 243. doi: 10.1088/1755-1315/243/1/012028
Jang, J.-S. (1993). ANFIS: Adaptive-network-based Fuzzy Inference System. Ieee Transactions On Systems, Man, And Cybernetics. 23,665-685. doi: 10.1109/21.256541
Kadarsyah. (2010). Aplikasi Roc Untuk Uji Kehandalan Model Hybmg. Jurnal Meteorologi Dan Geofisika, 11(2), 33-43. doi: 10.31172/jmg.v11i1.60
Kinasih, J.S., Nhita, F., Adiwijaya, A., (2015). Prediksi Curah Hujan Menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS). eProceedings of Engineering. 2.
Komalasari, K.E., Fajariana, Y., Nuraini, T.A., Anggraen, R. (2016). Aplikasi Metode Ensemble Mean Untuk Meningkatkan Reliabilitas Prediksi Hybmg Jurnal Meteorologi dan Geofisika, 17(1), 47-52. doi: 10.31172/jmg.v17i1.381
Kurniawan, F., Wibawa, A.P., Nugroho, S.M.S., Hariadi, M. (2017). Makassar Smart City Operation Center Priority Optimization Using Fuzzy Multi-criteria Decision-making. 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI): IEEE; 2017. doi: 10.11591/eecsi.4.1010
Liliwarti, L., Nengsih, S., Satwarnirat, S. (2016). Kestabilan Lereng Berdasarkan Intensitas Curah Hujan dan Permeabilitas Tanah. Jurnal Rekayasa Sipil Politeknik Negeri Andalas. 13,139442.
Lu, N., Qin, J., Gao, Y., Yang, K., Trenberth, K.E., Gehne, M., Zhu, Y. (2015). Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2000–2010. International Journal of Climatology. 35,1394-1404. doi: 10.1002/joc.4064
Manzanas, R. (2017). Assessing The Suitability of Statistical Downscaling Approaches For Seasonal Forecasting in Senegal. Atmospheric Science Letters. 18,381-386. doi: 10.1002/asl.767
Nuraini T.A., Nuryanto D.E., Komalasari K.E., Satyaningsih. R. Fajariana Y., Anggraeni R. Sopaheluwakan A. (2019). Pengembangan Model Hybmg 2.07 Untuk Prediksi Iklim di Indonesia Dengan Menggunakan Data Tropical Rainfall Measuring Mission (TRMM). Jurnal Meteorologi dan Geofisika, 20(2), 101-112. doi: 10.31172/jmg.v20i2.610
Navianti, D.R., Widjajati, F.A. (2012). Penerapan fuzzy inference system pada prediksi curah hujan di Surabaya Utara. Jurnal Sains dan Seni ITS. 1(1). doi: 10.12962/j23373520.v1i1.1005
NOAA. (2020). Oceanic El Niño Index (ONI). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed 15 Januari 2020).
Nur’utami, M.N., Hidayat, R. (2016). Influences Of Iod And Enso To Indonesian Rainfall Variability: Role Of Atmosphere-ocean Interaction In The Indo-pacific Sector. Procedia Environmental Sciences. 33,196-203. doi: 10.1016/j.proenv.2016.03.070
Pandey, A., Agrawal, C., Agrawal, M. (2017) A Hadoop Based Weather Prediction Model for Classification of Weather Data. 2017 Second International Conference On Electrical, Computer And Communication Technologies (ICECCT): doi: 10.1109/ICECCT.2017.8117862
Priyono, K.D., (2008). Analisis Morfometri Dan Morfostruktur Lereng Kejadian Longsor Di Kecamatan Banjarmangu Kabupaten Banjarnegara. Forum Geografi. doi: 10.23917/forgeo.v22i1.4926
Priyono, K.D., Priyana, Y. (2006). Analisis Tingkat Bahaya Longsor Tanah di Kecamatan Banjarmangu Kabupaten Banjarnegara. Forum Geografi, 20(2).
Qian, J.-H., Robertson, A.W., Moron, V. (2010). Interactions among Enso, The Monsoon, And Diurnal Cycle In Rainfall Variability Over Java, Indonesia. Journal Of The Atmospheric Sciences, 67, 3509-3524. doi: 10.1175/2010JAS3348.1
Ralph, F.M., Galarneau Jr, T.J. (2017). The Chiricahua Gap and the role of easterly water vapor transport in southeastern Arizona monsoon precipitation. Journal of Hydrometeorology. 18, 2511-2520. doi: 10.1175/JHM-D-17-0031.1
Ridmardhani, E. (2015). Kajian Gerakan Massa Tanah pada Kawasan Permukiman di Desa Sijeruk Kecamatan Banjarmangu Kabupaten Banjarnegara Provinsi Jawa Tengah. Thesis, UPN" Veteran" Yogyakarta.
Riordan, D., Hansen, B.K., (2002). A Fuzzy Case-based System For Weather Prediction. Engineering Intelligent Systems For Electrical Engineering And Communications. 10, 139-146.
Safril, A., Kristianto, A., Septiadi, D., Suwandi, I.G., Ahadi, S., Pribadi, S., Rohadi, S., Munawar, H.S., Mulsandi, A., Nugroho, H.A. (2017). Kajian Awal Sistem Peringatan Dini Longsor Berbasis Penguatan Sistem Prediksi Curah Hujan dan Gempa Bumi (Studi Area: Garut dan Banjarnegara). Tangerang Selatan: STMKG.
Schmidli, J., Frei, C., Vidale, P.L., (2006). Downscaling From GCM Precipitation: A Benchmark For Dynamical And Statistical Downscaling Methods. International Journal Of Climatology: A Journal Of The Royal Meteorological Society, 26, 679-689. doi: 10.1002/joc.1287
Soenarmo, S.H., Sadisun, I., Saptohartono, E., (2008). Kajian Awal Pengaruh Intensitas Curah Hujan Terhadap Pendugaan Potensi Tanah Longsor Berbasis Spasial Di Kabupaten Bandung, Jawa Barat. Jurnal Geoaplika, 3, 133-141.
Soto, J., Castillo, O., Soria, J. (2010). Chaotic Time Series Prediction Using Ensembles of ANFIS. In book: Soft Computing For Intelligent Control And Mobile Robotics: Springer; 2010. doi: 10.1007/978-3-642-15534-5_18
Susanti, I., (2017). Pola Kelembapan di Benua Maritim Indonesia dan Sekitarnya (The Indonesian Maritime Continent and Its Surroundings Moisture Patterns). Majalah Sains dan Teknologi Dirgantara. 10.
Susanti, P.D., Miardini, A., (2016). Analisis Tingkat Kerawanan dan Teknik Mitigasi Longsor di Sub Das Merawu. Prosiding Seminar Nasional Geografi UMS VII 2016.
Susanti, P.D., Miardini, A., Harjadi, B., (2017). Analisis Kerentanan Tanah Longsor Sebagai Dasar Mitigasi Di Kabupaten Banjarnegara. Jurnal Penelitian Pengelolaan Daerah Aliran Sungai. 1, 49-59.
Swarinoto Y.B, Koesmaryono Y., Aldrian E., Wigena A.H, (2012). Model Sistem Prediksi Ensemble Total Hujan Bulanan dengan Nilai Pembobot (Kasus Wilayah Kabupaten Indramayu) Jurnal Meteorologi Dan Geofisika, 13(3). doi: 10.31172/jmg.v13i3.134
Wang, H., Chen, H. (2012). Climate Control for Southeastern China Moisture and Precipitation: Indian or East Asian Monsoon?. Journal of Geophysical Research: Atmospheres. 117(D12). doi: 10.1029/2012JD017734
Wang W., Chen, M., Kumar, A. (2010). An Assessment of The CFS Real-time Seasonal Forecasts. Journal of Weather and Forecasting, 25(3). doi: 10.1175/2010WAF2222345.1
Warnadi. (2014). Inventarisasi Daerah Rawan Longsor Kabupaten Banjarnegara Jawa Tengah. Jurnal Spatial Wahana Komunikasi dan Informasi Geografi. 12(2). doi: 10.21009/spatial.122.06
Wilks, D.S., (2011). Statistical Methods In The Atmospheric Sciences. Oxford: Academic Press.
Xie, B., Zhang, Q., Ying, Y., (2011). Trends In Precipitable Water And Relative Humidity In China: 1979–2005. Journal Of Applied Meteorology And Climatology. 50, 1985-1994. doi: 10.1175/2011JAMC2446.1