STATUS KUALITAS PERAIRAN SELAT MATAK KABUPATEN KEPULAUAN ANAMBAS
Matak Strait Water Quality, Anambas Island District

Yudhi Soetrisno Garno dan Wage Komarawidjaja
Pusat Teknologi Lingkungan (PTL)
Badan Pengkajian dan Penerapan Teknologi (BPPT)
Gedung 820 Kawasan Puspiptek Serpong, Tangerang 15314
Email: yudhi.soetrisno@bppt.go.id

Abstract
Seaport Construction in Matak Strait located in Desa Matak, Kecamatan Matak, Kabupaten Kepulauan Anambas. This development will lead to an increase in the busyness of the Matak Strait and an accumulation of wastes generated by various activities in the area. This study was conducted to determine the states of the environment quality of the Strait in the current time. This study revealed that Strait Matak environmental quality is good as well as National quality standard for sea water. Matak Strait waters are inhabited by 10 species of phytoplankton Bacillariophyceae, Chlorophyceae and Dinophyceae which plankton abundance range is 17,500 - 23,100 ind./L. Each of these types of phytoplankton populations in relatively balanced community; there is no one type of phytoplankton dominate the other. Similarly, it happened in zooplankton. Abundance of phytoplankton in the Strait of Matak found to be greater than the Bay of Jakarta and Banten Bay, although relatively more fertile. The implications of this phenomenon can be concluded that the sampling for the determination of phytoplankton abundance is not appropriate to use planktonet.

Keywords: water quality, plankton, fotiplankton, zooplankton

Abstrak

Kata kunci: kualitas perairan, plankton, fotiplankton, zooplankton

1. PENDAHULUAN
Dalam rangka meningkatkan kinerja pembangunan Kabupaten Kepulauan Anambas, pemerintah Daerah merencanakan pembangunan beberapa Selat penyeberangan. Salah satu tempat yang sudah cukup lama direncanakan dan berdasarkan hasil kajian potensi wilayah serta studi kelayakan (FS) telah dinyatakan layak menjadi dermaga kapal Roro atau Selat penyeberangan adalah di Desa Matak, Kecamatan Palmatak, Kabupaten Anambas.

Pembangunan pelabuhan di Desa Matak yang terletak di Selat Matak, sebagaimana disajikan pada peta Gambar-1, selain untuk meningkatkan aktivitas pembangunan masyarakat di wilayah Kecamatan Palmatak dan sekitarnya; juga diarahkan untuk dapat disinggahi kapal-kapal dari Bintan yang akan menuju Singkawang melalui Natuna, dan sebaliknya. Dengan singgahnya kapal-kapal dari luar Kabupaten (Bintan & Natuna) dan luar Provinsi (Singkawang, Kalbar) maka diharapkan kegiatan sosial-ekonomi masyarakat sekitar akan lebih cepat meningkat dan menuju masyarakat yang sejahtera.

Peningkatan aktivitas Selat di Desa Matak tersebut kedepan akan menghasilkan berbagai limbah, terutama limbah organik yang terbuang/ masuk ke perairan Selat Matak. Limbah organik
tersebut, di perairan akan terurai (dekomposisi) menghasilkan zat hara; yang jika proses ini berlanjut akan dapat menyebabkan yutrofikasi (proses pengkayaan zat hara). Yutrofikasi, pada awalnya dapat meningkatkan produktifitas perairan [1,2,3], namun jika peningkatan zat hara secara berlebihan akan memicu terjadinya “algal-blooming” yang mengganggu metabolisme badan air dan menimbulkan berbagai masalah, seperti depleksi oksigen terlarut dan penurunan biodiversitas. Fenomena “Algal blooming” akan lebih berbahaya jika komunitas fitoplankton didominasi oleh fitoplankton beracun dari kelas Dinoflagellata, Bacillariophyceae; dan Cyanophyceae; yang dikenal sebagai Harmful Algal Blooms atau HABs [1,4].

Secara alamiah kandungan zat hara di perairan laut sangat bervariasi tergantung letak geografis dan musim. Di perairan laut didaerah yang memiliki 4 musim sangat berfluktuatif sedangkan di daerah sekitar kawasan perikanan zat hara di lapisan atas perairan sepanjang tahun cenderung rendah dan tidak fluktuatif [10]. Hal ini terjadi karena perairan laut didaerah dengan 4 musim, suplai zat hara dari lapisan bawah akibat pengadukan terjadi pada musim gugur dan dingin, sedangkan demakaan zat hara melalui fotosintesa terjadi pada musim semi dan panas. Sebaliknya di perairan disekitar kawasan perikanan fotosintesa terjadi sepanjang tahun, dan penambahan zat hara dari dasar laut akibat pengadukan tidak terjadi.

Nitrat-N, Ammonium (NH₄⁺)-N dan orthofosfat adalah bentuk-bentuk zat hara yang siap dipergunakan oleh fitoplankton berkhlorofil untuk melakukan fotosintesa. Secara umum Parson T.R, dkk, (1984) mengungkapkan bahwa kandungan Nitrat-N dan fosfat-P di permukaan perairan laut adalah berkisar antara 0.30 g atN¹ dan 0.3 gP at.P [11] sedangkan Corner dan Davies, (1971) mengungkapkan bahwa nitrogen di lapisan eufotik (0-100 m) perairan trofis berkisar antara 0.1-8,9g atN¹, dan fosfat-P antara 0.02-0.16 g atP¹ [10].

Fitoplankton adalah organisme-tumbuhan mikroskopik yang hidup melayang, mengapung didalam air dan memiliki kemampuan gerak yang terbatas [12]. Secara umum fitoplankton di perairan laut didominasi oleh diatom, dinoflagelata, coccolithophorids dan jenis flagellata yang lain.

Jenis fitoplankton memiliki respon yang berbeda terhadap perbandingan zat hara terlarut. Fenomena inilah yang menyebabkan struktur komunitas dan dominasi fitoplankton di setiap badan air selalu berbeda [13,14]. Secara khusus Kilham dan Klihm (1978) mengemukakan bahwa perbandingan nitrogen, fosfor dan silikat teraturan yang paling menentukan dominasi suatu jenis fitoplankton[15].

Selain perbandingan zat hara, dominasi fitoplankton dalam badan air juga ditentukan oleh zooplankton, yang menjadikan fitoplankton sebagai makanan utamanya. Dalam memakannya fitoplankton, zooplankton mampu melakukan pemilihan (selective feeding) berdasarkan jenis, bentuk dan ukuran fitoplankton yang hendak dimakannya [16,17]. Jenis-jenis fitoplankton yang tidak dimakan oleh zooplankton akan berkembang dan mendominasi komunitas fitoplankton perairan tersebut, sesuai dengan perbandingan unsur-unsur hara yang tersedia [18], baik yang berasal dari dalam maupun luar ekosistem.

Dari dalam sebuah ekosistem perairan umum zat hara berasal dari dekomposisi organik (detritus & kotoran/ekresi) dan regenerasi zat hara oleh zooplankton; sedangkan dari luar ekosistem zat hara masuk ke badan air melalui berbagai bahan buangan (limbah) baik yang di sengaja ataupun tidak.

Penelitian ini dilakukan dengan tujuan untuk mengetahui status kualitas perairan Selat Matak, yang tercermin pada konsentrasi zat hara dan kelembapan fitoplankton di perairan

2. BAHAN DAN METODE

2.1 Tempat dan Waktu Penelitian
Penelitian ini dilakukan di perairan Selat Matak, Desa Matak, Kecamatan Palmatah, Kabupaten Kepulauan Anambas dengan mengambil contoh air dari 3 titik sampling, masing-masing disebut tempat pengambilan sampel (TPS)-1 dengan posisi geografis 05°38’59.3” LS, 106°35’04.0” BT; TPS-2 dengan posisi geografis TPS-2 05°39’01.4” LS, 106°34’22.0” BT dan TPS-3 dengan posisi geografis 05°39’08.4” LS, 106°33’51.8” BT. Pengambilan sampel air untuk zat hara dan fitoplankton dilakukan pada bulan Oktober 2013.
2.2 Kegiatan Penelitian

Kegiatan penelitian ini terdiri dari kegiatan di lapangan dan laboratorium. Kegiatan dilapangan meliputi pengukuran parameter temperatur, kecerahan, dan oksigen terlarut; dan pengumpulan contoh untuk zat zarah dan plankton.

Di laboratorium, untuk menentukan zat hara sampel dianalisa dengan cara dan metode yang disampaikan dalam buku *standard method for the Examination of water and wastewater* [19]. Sementara itu untuk identifikasi dan pencacahan fitoplankton digunakan microskop [20], dan untuk menghitung kelimpahan digunakan rumus:

\[\text{Keterangan:} \]
\[\text{JF} = \frac{(\text{JSR} \times \text{JA})}{(\text{VSR} \times \text{JAS})} \]

3. HASIL DAN PEMBAHASAN

3.1 Fisik dan Kimia Air

Hasil pengukuran dan analisis terhadap parameter fisik dan kimia yang dilakukan selama penelitian disajikan pada Tabel 1. Tabel 1 menunjukkan bahwa pada saat pengukuran, temperatur air permukaan di ke-3 tempat pengambilan sampel (TPS) di Selat Matak berkisar antara 27,9 °C – 28,1 °C. Perbedaan temperatur diantara TPS-TPS tersebut diduga bukan karena sifat air yang berbeda, namun karena waktu pengukuran yang berbeda sekitar 1-2 jam. Di daerah tropis perbedaan temperatur tersebut sangat wajar, dan tidak mengganggu metabolisme biota perairan.

Kecerahan air hasil pengukuran dengan Secchi disk menunjukkan bahwa pada saat dilakukan penelitian kecerahan air di setiap TPS lebih besar dari 25 m. Dengan nilai kecerahan yang lebih dalam dari 25 meter menunjukkan bahwa perairan selat Matak tergolong oligotrofik.

Salinitas air di setiap TPS menunjukkan nilai yang seragam yakni 33 ppm, yang mengisarakan bahwa ketiga tempat yang saling berhubungan tersebut sama nilai salinitasnya. Nilai salinitas tersebut adalah nilai yang wajar untuk perairan pesisir. Selanjutnya nilai pH di ke-3 TPS, selama penelitian berkisar antara 8,12 - 8,19. Ini mengisyaratkan bahwa perairan tersebut tidak akan mengalami metabolisme yang menyulitkan kehidupan organisme perairan, utamanya ikan dan plankton.

Selanjutnya Tabel 1 menunjukkan bahwa saat penelitian dilakukan, perairan Selat Matak mengandung ammonium-N antara 0,008-0,016 mg/l, dan orthofosfat-P yang sangat rendah. Konsentrasi tersebut lebih kecil daripada hasil pengamatan di perairan pesisir Kabil di P. Batam dengan ammonium-N antara 0,004-0,056 mg/l dan ortofosfat-P antara 0,0001-0,050 mg/l [21]; perairan Kepulauan Matasiri, Kalimantan Selatan dengan ortofosfat-P sebesar 0,001-0,016 mg/l [22]; pesisir Pulau Kelapa yang mengandung orthofosfat-P antara 0,001-0,002 mg/l [23] dan daripada Selat Sunda Kelapa yang mengandung ammonium-N antara 0,069-0,153 mg/l dan ortofosfat-P antara 0,026-0,0066 mg/l [24]. Fenomena tersebut mengisyaratkan bahwa kualitas perairan Selat Matak lebih baik daripada perairan Pesisir Kabil, Kepulauan Matasiri Selat Sunda Kelapa dan pesisir Pulau Kelapa. Kondisi kualitas perairan Selat Matak yang relatif belum tercemar tersebut; diduga karena di pulau Matak saat ini belum banyak kegiatan-kegiatan ekonomi, baik industri maupun pertanian/perikanan yang menghasilkan limbah dalam jumlah besar, yang mampu menaikkan konsentrasi nitrogen dan fosfor di pesaran selat tersebut.

Tabel 1. Parameter Fisik dan kimia air selama penelitian di Selat Matak

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Keterangan</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisik</td>
<td></td>
<td>27,9</td>
<td>28,0</td>
<td>28,1</td>
</tr>
<tr>
<td>Sechid disk</td>
<td>m</td>
<td>>25</td>
<td>>25</td>
<td>>25</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>6,7</td>
<td>6,3</td>
<td>1,2</td>
</tr>
<tr>
<td>KIMIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8,15</td>
<td>8,19</td>
<td>8,12</td>
</tr>
<tr>
<td>Salinitas</td>
<td>%</td>
<td>33,0</td>
<td>33,0</td>
<td>33,0</td>
</tr>
<tr>
<td>Amonia (NH₃-N)</td>
<td>mg/l</td>
<td>0,016</td>
<td>0,008</td>
<td>0,008</td>
</tr>
<tr>
<td>Fosfat-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfit (H₂S)</td>
<td>mg/l</td>
<td><0,002</td>
<td><0,002</td>
<td><0,002</td>
</tr>
</tbody>
</table>

3.2 Biota Perairan

3.2.1 Fitoplankton

Hasil identifikasi dan pencacahan terhadap sampel-sampel dari ke-3 TPS mengisarakan bahwa perairan Selat Matak di huni oleh 3 kelompok fitoplankton yaitu (1) Bacillariophyceae (2) Chlorophyceae dan (3) Dinophyceae (Tabel 2). Tabel 2 mengisyaratkan bahwa secara umum kepadatan fitoplankton di sekitar Selat Matak berkisar antara 17.500 – 23.100 ind./l. dengan indeks keragaman berkisar antara 1,728-2,173; indeks keseragaman berkisar antara 0,177-0,216 dan indeks dominansi berkisar antara 0,129-0,153.
Nilai kelimpahan fitoplankton di Selat Matak yang berkisar 17,500 – 23,100 ind./l. adalah lebih besar daripada kelimpahan fitoplankton di Teluk Jakarta yang hanya sekitar 3,200 ind./l [25] dan Selat Banten yang sekitar 200-1,500 ind./l [26]; namun lebih kecil dari Selat Sunda yang sekitar 57,48 ind/ml-1.029,37 ind./ml [27]. Secara teoritis, kelimpahan fitoplankton akan berbanding lurus dengan kusuburan perairan, yaitu makin subur perairan makin tinggi kelimpahannya. Mengingat Selat Banten, Teluk Jakarta dan Selat Sunda berada di wilayah pesisir utara Pulau Jawa yang lebih subur daripada perairan Selat Matak maka kelimpahan fitoplankton di ke-3 lokasi tersebut selayaknya lebih besar daripada Selat Matak; tetapi ternyata kelimpahan fitoplankton yang lebih besar hanya di Selat Sunda sedangkan di Selat Banten dan Teluk Jakarta lebih kecil. Fenomena ini jelas disebabkan oleh penggunaan plankton-net dalam mengambil sampel fitoplankton, baik karena mess-size yang sama ataupun berbeda [28]. mengungkapkan bahwa pengambilan sampel fitoplankton dengan menggunakan plankton-net di lokasi yang sama; apalagi tempat berbeda tidak akan pernah menghasilkan struktur fitoplankton yang sama.

Tabel 2. Kelimpahan fitoplankton di Perairan Teluk Matak (ind./l).

<table>
<thead>
<tr>
<th>No</th>
<th>Organisma</th>
<th>Tampat Pengambilan Sampel</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bacillariophyceae</td>
<td></td>
<td>5.6</td>
<td>8.4</td>
<td>5,600</td>
</tr>
<tr>
<td>2</td>
<td>Chaetocerospa</td>
<td></td>
<td>1.4</td>
<td>1.4</td>
<td>700</td>
</tr>
<tr>
<td>3</td>
<td>Cosmodiscopasps</td>
<td></td>
<td>2.1</td>
<td>700</td>
<td>1,400</td>
</tr>
<tr>
<td>4</td>
<td>Asterionelloa sp.</td>
<td></td>
<td>2.1</td>
<td>1.4</td>
<td>1,400</td>
</tr>
<tr>
<td>5</td>
<td>Bacillariastrum sp.</td>
<td></td>
<td>2.8</td>
<td>1.4</td>
<td>700</td>
</tr>
<tr>
<td>6</td>
<td>Nitzschia spp.</td>
<td></td>
<td>2.1</td>
<td>1.4</td>
<td>1,210</td>
</tr>
<tr>
<td>7</td>
<td>Rhizosolenasps</td>
<td></td>
<td>2.1</td>
<td>2.1</td>
<td>1,400</td>
</tr>
<tr>
<td>8</td>
<td>Ceratium sp.</td>
<td></td>
<td>1,00</td>
<td>2,00</td>
<td>1,400</td>
</tr>
<tr>
<td>9</td>
<td>Closatium sp.</td>
<td></td>
<td>700</td>
<td>700</td>
<td>1,400</td>
</tr>
<tr>
<td>10</td>
<td>Dinophyceae</td>
<td></td>
<td>1,00</td>
<td>2,00</td>
<td>1,400</td>
</tr>
<tr>
<td></td>
<td>Diophylyssp.</td>
<td></td>
<td>2,00</td>
<td>2,00</td>
<td>1,400</td>
</tr>
</tbody>
</table>

Sumber: Data primer November 2013

Tabel 2 menunjukkan bahwa nilai indeks komunitas fitoplankton; yakni indeks-indeks keragaman, keseragaman dan dominansi antar TPS di Selat Matak adalah seragam. Berkenaan dengan indeks keragaman (H'); Stirn, 1981 mengungkapkan bahwa perairan dengan nilai H’ < 1 adalah perairan dengan komunitas biota yang tidak stabil, perairan dengan nilai H’ antara 1-3 adalah perairan dengan komunitas biota yang moderat (sedang); dan dengan nilai H’ > 3 adalah perairan dengan kondisi komunitas biota prima atau stabil [29]. Dengan demikian berdasarkan nilai keragaman yang 1.728-2.173, berarti perairan Selat Matak berada dalam kondisi moderat (sedang) atau layak untuk kehidupan fitoplankton.

Selanjutnya, berkenaan dengan indeks keseragaman (E’) Pirza et al., 2005 [30] mengungkapkan bahwa komunitas dengan nilai keseragaman mendekati nol menunjukkan bahwa keseragaman antar spesies di dalam komunitas tergolong rendah dan sebaliknya komunitas dengan nilai keseragaman yang mendekati satu dapat dikatakan keseragaman antar spesies tergolong merata atau sama [30]. Dengan demikian berdasarkan nilai indeks keseragaman 0,177-0,216 berarti perairan Selat Matak memiliki keseragaman antar spesies yang tergolong rendah. Ini mengindikasikan bahwa komunitas fitoplankton di perairan Selat Matak tidak memiliki jenis fitoplankton yang dominan, karena populasi yang ada bersifat tidak berbeda nyata.

Ketidakadalan jenis fitoplankton yang dominan tersebut didukung oleh indeks dominansi perairan Selat Matak yang berkisar 0,129-0,153 yang mengisyaratkan bahwa dalam komunitas fitoplankton tidak ada yang mendominasi. Basmi (2000) mengungkapkan bahwa dengan nilai indeks dominansi mendekati 1 menunjukkan bahwa dalam komunitas terdapat spesies yang mendominasi spesies lainnya, sebaliknya apabila mendekati nilai 0 maka di dalam komunitas tidak terdapat spesies yang secara ekstrim mendominasi spesies lainnya [30].

3.2.2 Zooplankton

Hasil identifikasi dan pencacahan terhadap sampel-sampel dari ke-3 TPS mengisyaratkan bahwa perairan Selat Matak di huni oleh 2 kelompok zooplankton yaitu (1)-Crustacea yang hanya diwakili oleh Nauplius sp.. dan (2)-Copepoda yang diwakili oleh 2 (dua) spesies yaitu Synchaeta sp dan Cyclopoid sp. Nauplius sp.. dan Cyclopoid sp. ditemukan di tiap TPS, sedangkan Synchaeta sp hanya ditemukan di 2 TPS yakni TPS-1 dan TPS-3 (Tabel-3). Secara umum Tabel 3 mengungkapkan bahwa kepadatan zooplankton di perairan SelatMatak berkisar antara 2.100-4.900 ind/ml, dengan indeks keragaman berkisar antara 0.637-1.079, indeks keseragaman berkisar antara 0.083-0.127 dan indeks dominansi berkisar antara 0.347-0.556. Dengan acuan yang sama pada pembahasan hubungan nilai indeks Shannon-Wiener pada komunitas fitoplankton tersebut diatas maka dapat disimpulkan bahwa:

- komunitas zooplankton di perairan Selat Matak yang memiliki indeks keragaman 0.637-1.079 berada dalam keadaan moderat/sedang;
- komunitas zooplankton di perairan Selat Matak dengan indeks keseragaman 0.083-0.127 memiliki keseragaman antar spesies yang rendah, yang mengindikasikan perbandingan populasi dari jenis jenis zooplankton sebanding atau tidak ada yang mendominasi;
- komunitas zooplankton di perairan Selat Matak yang memiliki indeks dominansi

68 Jurnal Teknologi Lingkungan Vol. 15, No. 2, Juli 2014 Hlm. 65-70
(D) 0,347-0,556. dalam keadaan tidak ada zooplankton yang dominan.

4. KESIMPULAN
Penelitian ini mengungkapkan bahwa pada saat penelitian dilakukan kualitas perairan Selat Mata

K dalam keadaan normal, relatif belum tercermin. Perairan ini dihuni oleh 10 jenis fitoplankton dari Bacillariophyceae, Chlorophyceae dan Dinophyceae dengan kelimpahan antara 17.500 – 23.100 ind./l. Masing-masing populasi jenis fitoplankton dalam komunitas relatif berimbang; tidak ada satu jenis fitoplankton yang mendo-

Tabel 3 Kelimpahan Zooplankton di Perairan Pelabuhan Desa Mata (ind./l).

<table>
<thead>
<tr>
<th>No</th>
<th>Organisma</th>
<th>Tempat Pengambilan Sampel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ZOOPLEKTON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRUSTACEAE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Nauplius sp.</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>Synchaeta sp.</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>Cyclopoid sp.</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Jumlah Jenis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Kepadatan Nitro</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>Indeks keragaman Shannan (H')</td>
<td>1,079</td>
</tr>
<tr>
<td></td>
<td>Indeks keseragaman (E)</td>
<td>0,127</td>
</tr>
<tr>
<td></td>
<td>Indeks dominansi (D)</td>
<td>0,347</td>
</tr>
</tbody>
</table>

minasi. Demikian pula dengan kondisi zooplankton yang ada. Zooplankton ditemukan 3 jenis dan diantaranya tidak ada yang mendo-minasi.

Kelimpahan fitoplankton di Selat Mata ditemukan lebih besar daripada Teluk Jakarta dan Selat Banten, yang relatif lebih subur. Fenomena ini mengungkapkan bahwa pengambilan sampel untuk penentuan kelimpahan fitoplankton tidak tepat menggunakan planktonet.

DAFTAR PUSTAKA

Status Kualitas Air ……………… (Yudhi Soetrisno Garo dan Wage Komarawidjaja) 69