Analisa Eksergi PLTU Berbahan Bakar Sampah Padat Kota Kapasitas 600 Ton per Hari

Amiral Aziz

Abstract


ABSTRACT

Exergy analysis was conducted in evaluating the performance of Muncipal Solid Waste Fired Steam Power Plant (PLTSa) to determine the locations and quantities of exergy losses. Wastes and exergy destructions in different processes of the plant were also been calculated. Total exergy available at incinerator input was 60.560,54 kW, consisted of 58.242,45 kW in MSW and 2.318,08 kW in the combustion air. The burning of 600 ton per day MSW in the PLTSa produced 8.482,83 kW Net Electric Power, accounted for 14,01 % of the overall exergy efficiency of the power plant. The plant produced electrical energy 59.447.673 kWh/year and reduced 240.900 ton MSW/year, thus contributing to CO2 emission reduction. Exergy efficiency of the turbine generator and condenser were 86,21 % and  78,48 % respectively. PLTSa component with the largest exergy destructions was incinerator-boiler (56,53 %), far exceeded the turbine generator (8,69 %), and condenser (3,79 %).

Keywords: Exergy, Exergy Destruction, Steam Power Plant, Muncipal Solid Waste  (MSW), Exergy Efficiency.

ABSTRAK

Pentingnya analisa eksergi dalam mengevaluasi kinerja PLTSa telah terbukti. Analisa eksergi PLTSa telah dilakukan untuk mengetahui lokasi dan jumlah kerugian eksergi. Limbah dan destruksi eksergi dalam proses yang berbeda telah diindikasikan. Hasil yang diperoleh menunjukkan bahwa total eksergi yang tersedia pada input Incenerator adalah 60560,54 kW. Nilai ini terdiri dari 58242,45 kW yang terkandung dalam MSW dan 2318,08 kW dalam udara pembakaran. Pembakaran 600 ton per hari MSW pada sistem PLTSa menghasilkan  8482,83 kW daya listrik bersih dan 14,01 % efisiensi eksergi keseluruhan pembangkit. Pembangkit menghaslkan energi listrik sebesar 59447673 kWh/tahun dan mengurangi timbunan sampah sebanyak 240900 ton MSW/tahun, sehingga berkontribusi dalam mengurangi emisi CO2. Efisiensi eksergi dari sistem turbin generator dan sistem kondensor masing-masing adalah 86,21 % dan  78,48 %. Komponen PLTSa dimana terjadi destruksi eksergi yang terbesar berturut-turut adalah pada sistem Insinerator-boiler sebesar 56,53 % , sistem turbine - generator 8,69% dan sistem kondensor 3,79%.

Kata kuncis: Eksergi, Destruksi Eksergi,  PLTUSa, Sampah Padat Kota (MSW), Efisiensi Eksergi


Full Text:

PDF

References


Anonimous. (2018). Jakarta Dalam Angka 2018, Badan Pusat Statistik Provinsi DKI Jakarta.

Anonimous., (2018). Peraturan Presiden No. 35 tahun 2018 tentang Percepatan Pembangunan Instalasi Pengolahan Sampah Menjadi Energi Listrik Berbasis Teknologi Ramah Lingkungan di Provinsi DKI Jakarta, Kota Tangerang, Kota Tangerang Selatan, Kota Bekasi, Kota Bandung, Kota Semarang, Kota Surakarta, Kota Surabaya, Kota Makasar, Kota Denpasar, Kota Palembang dan Kota Manado.

Anonimous., (2015). Peraturan Menteri ESDM No. 44 tahun 2015 tentang Pembelian Tenaga Listrik oleh PT PLN (Persero) dari Pusat Listrik Tenaga Sampah (PLTSa)

Anonimous. (2015). 21’ Century Advanced Concept for Waste Fired Power Plant, Babcock & Wilcox.

Adrian Bejan, George Tsatsaronis & Michael Moran. (1996). Thermal Design & Optimization, John Wiley & Sons, Inc, New York USA.

Amirabedin Ehsan & M.Zeki Yilmazoglu. (2011). Design and Exergy Analysis of Thermal Power Plant Using Different Types of Turkish Lignite, International Journal of Thermodynamics, Vol 14 No3 pp 125-133.

Arthur M Omari & Karoli N Njau, September. (2015). Mass And Energy Balance For Fixed Bed Incinerators- A case of a locally designed incinerator in Tanzania, Journal of Multidisciplinary Engineering Science and Technology (JMEST) , Vol. 2 Issue 9, pp 2365-2373

Chattopadhy,P. (2006). Boiler Operation Engineering, Tata McGraw Hill New Delhi.

Gong, M., & Wall, G. (1997). On exergetics, economics and optimization of technical processes to meet environmental conditions. Proceedings of the conference: Thermodynamic analysis and improvement of energy systems, Beijing, China, 453-460.

Jan Szargut, David. R. Morris & Frank. R. Steward,. (1988). Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, Hemisphire Publishing Corporation, New York USA.

Kaushik,S.C, Siva Reddy,V & Tyagily,SK,. (2011). Energy and Exergy Analyses of Thermal Power Plant : A Review, Renewable and Sustanable Energy Reviews.

Kotas, T.J,. (1995). The exergy method of thermal plant analysis. Krieger Publishing Co. Ltd. Florida, USA.

Moran-Shapiro. (1999). Fundamental of Engineering Thermodynamic, 4th ed, Willey, USA.

Nag, PK (2002). Power Plant Engineering nd Edition, Mc Graw Hill

Rosen, M.& Dincer, I (2008). Exergy as the confluence of energy, environment and sustainable development. Internat. J. on Exergy, 1, 3-13.

Syamsir,A.Muin (1988). Pesawat- Pesawat Konversi Energi 1 (Ketel Uap), Rajawali Press,Jakarta.

Ujam, A.J & Ebob,F (2012). Thermal Analysis of a Small Scale Municipal Solid Waste Fired Steam Generator : Case Study of Enugu State, Nigeria, Journal of Energy Technologies and Policy, Vol 2 No 5.

Walter R Niesen (2002). Combustion and Incineration Processes, Third Edition, Marcel Dekker, Inc, New York.




DOI: http://dx.doi.org/10.29122/jtl.v20i2.2755

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.