Batas Ekologi untuk Pembangunan Berkelanjutan Menggunakan Metode UETs di Wilayah Utara Propinsi Mie, Jepang

Main Article Content

Anugerah Widiyanto
Erwina Widjajawati



Perencanaan penggunaan lahan yang berkelanjutan memerlukan analisis mendalam tentang sumber daya alam yang ada (localizer, features, kepekaan terhadap pembangunan) dan pemahaman tentang karakteristik pembangunan (kebutuhan sumber daya dan side effecs) untuk mengidentifikasi penggunaan sumber daya alam pada kriteria keberlanjutan yang artinya bahwa pembangunan dapat didukung secara ekologis. Dalam konteks ini, beberapa metode menggunakan konsep ambang batas (thresholds concept) untuk menetapkan batas kemampuan lingkungan untuk mendukung pengembangan pembangunan yang direncanakan sumber daya alam yang tidak akan merugikan kehidupan generasi masa depan. Salah satu metode ini adalah UETs (Ultimate Environmental Thresholds) yang dikembangkan dan diterapkan dengan tujuan mengidentifikasi ambang batas akhir kemampuan lingkungan untuk pembangunan. Integrasi UETs dan GIS dikembangkan dalam penelitian ini untuk mengidentifikasi ambang batas lingkungan untuk pengembangan daerah pemukiman di Wilayah Utara Propinsi Mie, Jepang. Hasil dari penelitian ini adalah penilaian ambang batas toleransi hutan terhadap pembangunan pemukiman perkotaan.

Kata kunci: pembangunan berkelanjutan, nilai ekologi, ambang batas, UETs dan GIS



Sustainable land use planning is essential to determine the most efficient use of existing natural resources that will not prejudice future development. There is a need to analyze relationships between natural resources and development to assess development possibilities which are based ecologically. Some methods use thresholds concept to establish the limits environment ability to support planned development. One of these methods is the Ultimate Environmental Thresholds (UETs) which develop and apply with the aim of identifying the environmental thresholds for development. The integration UETs method and GIS was developed as a means of identifying of this study areas and development level to which various forms of residential areas should be confined on the Northern Region of Mie Prefecture, Japan. The outcome of this study that is the territorial thresholds of forest tolerance to urban development have established. 

Keywords: sustainable development, ecological value, thresholds, UET and GIS 


Article Details

Author Biography

Anugerah Widiyanto, Agency for the Assessment and Application of Technology (BPPT), Indonesia

Technology Based Business  Incubator/ Balai Inkubator Teknologi (BIT)


Watanabe, C., (1999). System option for sustainable development-effect and limit of the Ministry of International Trade and Industry’s efforts to substitute technology for energy, Research Policy, 28(7), 719-749.

Tait, J., and Morris, D., (2000), Sustainable development of agricultural Systems: competing objectives and critical limits, Futures, 32(3-4), 247-260.

Prato. T, (2001). Modeling carrying capacity for national park. Ecological Economics. 9(3), 321-331.

Sanga N.K., and Widjajawati E., (2004), Environmental Limitation: A framework for sustainable development on the Northern Region of Mie using UETs and GIS, GIS A conference, Tokyo, Japan Vol.13, pp 121-124.

IUCN, UNEP, WWF Caring for the earth- A strategy for sustainable living, Gland, 1991.

Kozlowski, Jã€Thresholds Approach in Urban, Regional and Environmental Planning, University of Queensland Press, St.Lucia, London, New York, 1986.

Kozlowski J, Rosier J, Hill G, (1988). Ultimate Environmental Thresholds (UET) method in a marine environment (Great Barrier Reef Marine Park in Australia), Landscape and Urban Planning, 15(3-4), 327-336.

Kozlowski J, (1990). Sustainable development in professional planning: a potential contribution of the EIA and UET concepts, Landscape and Urban Planning, 19(4), 307-332.

Sanga, N.K., (2003). Quantitative estimation of CO2 sequestration by forest systems in Mie using GIS and RS, Proc. MU GIS Society. Vol3. 2003.

Sanga, N.K., Iizuka, K., Kobayashi, S., (2012), Estimating CO2 Sequestration by Forests in Oita Prefecture, Japan, by Combining LANDSAT ETM+ and ALOS Satellite Remote Sensing Data. Remote Sensing. 4(11), 3544-3570

Waddel, P and Alberti, M., (1998) Integration of an Urban Simulation Model and Urban Ecosystems Model, Proc International environment and GIS vol2/1998, Hongkong.

Shattri, M., Nordin, A., and Rashid, S. GIS Based Multicriteria Approaches to Housing Site Suitability Assessment. Shaping the Change. XXIII FIG Congress. Munich, Germany, October 8-13, 2006.

Setiawan, N.N., Vanhellemont, M., Baeten, L., Van de Peer, T., Ampoorter, E., Ponette, Q., Verheyen, K., (2015). Local neighbourhood effects on sapling growth in a young experimental forest, Forest Ecology and Management, 384, 424-443.

Kapfer, J., Hedl, R., Juransinski, G., Kopecky, M., Schei, F.H., Grytnes, J.A. (2017). Resurveying historical vegetation data – opportunities and challenges. Applied Vegetation Science, 20(2), 164-171.

Arya, M., Geetha, P., Soman, K.P., (2017). Effect of Wind Farms in Crop Production of Kanyakumari District. Indian Journal of Science and Technology, 8(28), 641-645.

Chamagne, J., Tanadini, M., Frank, D., Matula, R., Paine, T., Philipson, C.D., Philipson, Svatek, M., Turnbull, L.A., Volaric, D., Hector, A., (2016). Forest diversity promotes individual tree growth in central European forest stands. Jounal of Applied Ecology, 54 (1). 71-79.

Baeten, L., Hermy, M., Verheyen, K., (2009). Environmental Limitation Contributes to the Differential Colonization Capacity of Two Forest Herbs. Journal of Vegetation Science. 20(2). 209-223.

Breuste. J.H, (2004). Decision making, planning and design for the conservation of indigenous vegetation within urban development, Landscape and Urban Planning 68(4), 439-542.

Brandon, T., and Bestelmeyer, (2006) Threshold Concepts and Their Use in Rangeland Management and Restoration: The Good, the Bad, and the Insidious, Restoration Ecology 14(3), 325-329.

Burrough P.A, Principles of Geographic Information Systems for Land resources assessment, Monograph on soil and resources survey vol 12, Oxford University Press, 1986.

Sanga, N.K., (2000). GIS and Remote Sensing for sustainable man-nature coexistence, MU GIS Society. Vol1. 2000.

Klosterman, R.E, (1995), The appropriateness of geographic information systems for regional planning in the developing world. Computers, Environment and Urban Systems, 19(1), 1-13.

Baeten L, Verheyen, K., and Collins, B., (2017). Changes in the nature of environmental limitation in two forest herbs during two decades of forest succession, Vegetation Science, 28(5). 883-892.

Van de Peer, T., Verheyen, K., Baeten, L., Ponette, Q., Muys, B., (2016), Biodiversity as insurance for sapling survival in experimental tree plantations, Journal of Applied Ecology, 53(6), 1777-1786.

Van Den Berge, S., Beaten, L., Vanhellemont, M., Ampoorter, E., Proesmans, W., Eeraerts, M., Hermy, M., Smagghe, G., Vermeulen, I., Verheyen, K., (2018), Species diversity, pollinator resources value and edibility potential woody networks in the countryside in norther Belgium, Agriculture, Ecosystems & Environment, 259(1), 119-126.

Ratcliffe, S., Wirth, C., Jucker, T.,Beaten, L., et al. (2017), Biodiversity and ecosystem fuction relations in European forest depend on environmental context, Ecology Letters, 20(11). 1414–1426.

Kobayashi, S., Omura, Y., Sanga, N.K., Yamaguchi, Y., Widyorini, R., Fujita, M.S., Supriadi, B., Kawai, S., (2015). Yearly Variation of Acacia Plantation Forests Obtained by Polarimetric Analysis of ALOS PALSAR Data, IEEE Journal of selected topics in applied earth observations and remote sensing, 8(11). 5294 – 5304.

Shiraishi, T., Motohka, T., Thapa, R. B., Watanabe, M., Shimada, M., (2014). Comparative assessment of supervised classifiers for land use–Land cover classification in a tropical region using time-series PALSAR mosaic data, IEEE J. Sel. Topics Appl. Earth Observations and Remote Sensing, 7(4), 1186-1199.

Singh, G., Yamaguchi, Y., Park, S. E., (2013). General four-component scattering power decomposition with unitary transformation of coherency matrix, IEEE Transaction Geosicence and Remote Sensing, 51(5). 3014-3022.

Mori, S.A., Lertzman, K.P., Gustafsson, L., (2017). Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology, 54(1), 12-27.

Baeten, L., Jacquemyn, H., Calster, H.V., Beek, E.V., Devlaeminck, R., Verheyen, K., Hermy, M., (2009). Low recruitment across life stages partly accounts for the slow colonization of forest herbs.journal of ecology, 97(1), 109-117.

Verheyen, K., Baeten, L., Frenne, D.G., Roemerann, M.B., Brunet, J., Cornelis, J., Decocq, G., Dierschke, H., Eriksson, O., Hedl, R., et al (2012). Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology. 100(2). 352-365.

Groote, S.D., Lantman, I.M.V.S., Sercu, B.K., et al (2017). Tree species identity outweighs the effects of tree species diversity and forest fragmentation on understorey diversity and composition. Plant Ecology and Evolution. 150(3).229-239.

Arrowsmith, C., and Inbakaran, R., (2002). Estimating environmental resilience for the Grampians National Park, Victoria, Australia: a quantitative approach, Tourism Management, 23(3), 295-309.