Identifikasi Kontaminasi Air Tanah Oleh Polutan Cl- di Kawasan Pertanian Garam, Kecamatan Pademawu, Pamekasan, Madura Menggunakan Metode Geolistrik Tahanan Jenis

Wisnu Arya Gemilang, Ulung Jantama Wisha, Gunardi Kusumah

Abstract


ABSTRACT

Pademawu Sub-District consist of salt ponds reached 740.96 Ha that is the second largest area in Pamekasan. Land-use overlapping problems between salt ponds and settlement influence the environmental degradation enhancement. The presence of salt ponds is indicated as the cause of increased salinity in well-water around the settlement so that the well-water is salty. To determine the influence of salt pond on groundwater pollution, the information regarding surface characteristics as well as the profile beneath the surface is essential. The method consisted of a hydro-geology survey, hydrochemistry, and geophysics (Geo-Electricity method). The type of groundwater is predominated by chloride (Na-Cl) and carbonate (Na-HCO3, Ca-HCO3). Based on groundwater chemistry element calculation, it is observed that there is an influence of salt pond infiltration on groundwater aquifer. The conductivity of groundwater ranged from 15,000–50,000 µS/cm (categorized into salty water). The specific resistance value of rocks beneath the surface varied between 0.1–300 that is usual in either coastal or alluvial area. The low value of specific resistance associated with alluvial lithology consisted of either brackish water or salt water expected the result of salt pond filtration. The depth of surface saltwater contaminating the aquifer layer ranged from 5 up to 30 meters. The presence of salt ponds influences the level of contamination of Cl- pollutant in shallow groundwater in Pademawu Sub-District, Madura, so it is necessary to re-arrange the land-use system in the coastal area.

Keyword: groundwater pollution, salt pond, Pademawu Sub-District, Specific resistance Geo-Electricity

ABSTRAK

 

Kecamatan Pademawu terdiri atas kawasan tambak garam seluas 740,96 Ha yang merupakan wilayah terluas kedua di Pamekasan. Pemasalahan tumpang tindih jenis pemanfaatan lahan tambak garam dengan lahan pemukiman berpengaruh terhadap peningkatan degradasi lingkungan. Keberadaan tambak garam diindikasikan sebagai penyebab meningkatnya kadar salinitas pada air sumur di sekitar pemukiman sehingga air sumur terasa asin. Untuk mengetahui pengaruh keberadaan tambak garam terhadap pencemaran air tanah, dibutuhkan informasi mengenai karakteristik permukaan maupun profil bawah permukaan. Metode penelitian yang dipakai terdiri atas survei hidrogeologi, hidrokimia dan geofisika (metode geolistrik). Tipe air tanah didominasi oleh tipe klorida (Na-Cl) dan karbonat (Na-HCO3,Ca-HCO3), hasil perhitungan rasio unsur kimia air tanah menunjukkan adanya pengaruh infiltrasi air tambak garam kedalam akuifer air tanah. Nilai DHL air tanah daerah penelitian didominasi nilai dengan kisaran 15.000–50.000 µS/cm dan masuk dalam sifat air asin. Nilai tahanan jenis batuan bawah permukaan bervariasi antara 0,1–300 Ωm yang umum dimiliki pada kawasan pesisir atau alluvial. Nilai tahanan jenis rendah berasosiasi dengan litologi alluvial yang terdiri atas air payau atau air asin yang diduga hasil infiltrasi dari air tambak garam. Kedalaman muka air asin yang mencemari lapisan akuifer berada pada kisaran kedalaman 5 hingga 30 m. Keberadaan tambak garam memberi pengaruh terhadap tingkat pencemaran polutan Cl- pada air tanah dangkal yang ada di Kecamatan Pademawu, Madura, sehingga dibutuhkan penataan ulang sistem tata guna lahan di kawasan pesisir tersebut.

Kata kunci: pencemaran air tanah, tambak garam, Kecamatan Pademawu, Geolistrik tahanan jenis


Full Text:

PDF

References


Citrayati Noviana., Antariksa dan Ema Yunita Titisari. (2008). Pemukiman Masyarakat Petani Garam Di Desa Pinggir Papas, Kabupaten Sumenep. Arsitektur e-Journal, 1(1): 1-14.

Efendy, M., Sidik, R. F., & Muhsoni, F. F. (2014). Pemetaan Potensi Pengembangan Lahan Tambak Garam Di Pesisir Utara Kabupaten Pamekasan. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 7(1), 1-11.

Efe, S. T. (2002). Urban warming in Nigerian cities. The case of warri metropolis. African Journal of Environmental Studies, 3(1-2), 160-168.

Siswanto, A. D., & Nugraha, W. A. (2016). Permasalahan Dan Potensi Pesisir Di Kabupaten Sampang. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 9(1), 12-16.

Zhou, Q. Y., Matsui, H., & Shimada, J. (2004). Characterization of the unsaturated zone around a cavity in fractured rocks using electrical resistivity tomography. Journal of Hydraulic Research, 42(S1), 25-31.

Rao, B. V., Prasad, Y. S., & Reddy, K. S. (2013). Hydrogeophysical investigations in a typical Khondalitic terrain to delineate the kaolinised layer using resistivity imaging. Journal of the Geological Society of India, 81(4), 521-530.

Okiongbo, K. S., Akpofure, E., & Odubo, E. (2011). Determination of aquifer protective capacity and corrosivity of near surface materials in Yenagoa city, Nigeria. Research Journal of Applied Sciences, Engineering and Technology, 3(8), 785-791.

Situmorang, R.I., Agustianto, D.A., Suparman, M. (1992). Peta Geologi Lembar Waru – Sumenep Jawa. Bandung. Pusat Penelitian dan Pengembangan Geologi.

Poespowardoyo, R, S. (1986). Peta Hidrogeologi Indonesia Lembar VIII Surabaya (Jawa). Bandung. Direktorat Geologi Tata Lingkungan.

Eaton, D. A., Clesceri, S.L., Rice, W.E., dan Greenberg, E.A. (2005). Standard Methods for the examination of water and wastewater. 21st Ed, American Public Health Association, Washington.

Anomohanran, O. (2013). Investigating the geoelectric response of water saturated and hydrocarbon impacted sand in the vicinity of petroleum pipeline. International Journal of Applied, 3(2).

Egbai, J. C. (2011). Vertical electrical sounding for the determination of aquifer transmissivity. Australian journal of basic and applied sciences, 5(6), 1209-1214.

Telford, W.M., Geldart, L.P., dan Sheriff, R.E., (1990). Applied Geophysics. Second edition, Cambridge University Press.

Hem, J.D. (1989). Study and Interpretation of the Chemical Characteristics of Natural Water, 3rded, U.S. Geological Survey, Water Supplay Paper 2254, 8-10p.

Mondal, N.C., Singh, V.S., Saxena, V.K. and Prasad, R.K. (2008). Improvement of groundwater quality due to fresh water ingress in Potharlanka Island, Krishna delta, India. Environmental Geology, 55(3), pp.595-603.

Shammas, M.I. and Jacks, G. (2007). Seawater intrusion in the Salalah plain aquifer, Oman. Environmental Geology, 53(3), pp.575-587. Doi: 10.1007/s00254-007-0673-2.

Yang, He Hai dan Guang, Li Xu. (2013). Hydrochemical Characteristics and Evolution Laws of Shallow Groundwater in Shuangliao City, Journal of Chemical and Pharmaceutical Research, Vol 5 (11), 283 – 288 p. Doi: 10.4028/www.scientific.net/amr.726-731.3419.

Kehew, A. E. (2000). Applied chemical hydrogeology. Prentice Hall.

Revelle, R. (1941). Criteria for recognition of the sea water in ground‐waters. Eos, Transactions American Geophysical Union, 22(3), pp.593-597.

Panitia Ad Hoc Intrusi Air Asin Jakarta (PAHIAA-Jakarta). (1986). Klasifikasi Keasinan Perairan Jakarta.

Naryanto, H.S. (2011). Potensi Air Tanah di Daerah Cikarang dan Sekitarnya, Kabupaten Bekasi Berdasarkan Analisis Pengukuran Geolistrik. Jurnal Air Indonesia, 4(1).




DOI: http://dx.doi.org/10.29122/jtl.v20i1.2944

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.