Perbandingan Penggunaan Panel Surya dan Turbin Angin dalam Implementasi Energi Baru Terbarukan (EBT) di Lingkungan Universitas Pertamina

Main Article Content

Riestiya Zain Fadillah
Adhytia Ihza Mahendra
Muhamad Benando Pangestu
Afriansyah Afriansyah
Ahmad Fauzan Rahman
Alzahid Muhasabah
Meredita Susanty
Erwin Setiawan

Abstract

ABSTRACT


Health risk characteristics expressed as a Risk Quotient (RQ) can be carried out through an environmental health risk analysis (ARKL) approach. This approach can estimate the public health risk caused by the concentration of risk agents of particulates consisting of PM2.5, PM10, and TSP. The research on the fluctuation of ambient air particulate pollutant and its risk to public health was conducted in each sub-district of Bogor City. Author identified a total of 360 respondents to determine the community anthropometric variable of exposures for time, frequency, and duration. There are several steps that need to be carried out to obtain the RQ value, namely identification of hazards from particulate risk agents, analysis of the dose-response in the form of Reference Concentration (RFC), analysis of the exposure obtained based on anthropometric variables, and the concentration of risk agents as well as characteristics of risk levels. The risk level characteristic shows that the RQ value of TSP is always the highest one, followed by PM10 and PM2.5. The respective RQ values of TSP for male and female residents are 1.85 and 1.53. Cumulatively, the male and female population in Tanah Sareal produced the highest RQ values. Those are 4.44 and 3.36, respectively. At the same time, the lowest cumulative RQ was obtained for male and female residents in East Bogor with RQ values of 2.96 and 2.54. The RQ value of each risk agent or the cumulative RQ that is more than 1 (RQ> 1) is stated to have or has a health risk, so it needs to be controlled, while the RQ value which is less than one (1) is displayed not to need to be controlled but needs to be maintained.


Keywords: particulate, risk level, exposure assessment, anthropometric characteristic, environmental health risk assessment


 


ABSTRAK


Karakteristik risiko kesehatan yang dinyatakan sebagai Risk Quotient (RQ) dapat dilakukan melalui pendekatan Analisis Risiko Kesehatan Lingkungan (ARKL). Pendekatan ini dapat mengestimasi risiko kesehatan masyarakat yang disebabkan oleh konsentrasi agen risiko yaitu PM2,5, PM10, dan TSP di tiap-tiap kecamatan di Kota Bogor. Penulis mengidentifikasi sebanyak 360 responden yang terdiri dari laki-laki dan perempuan untuk menentukan variabel antropometri masyarakat di Kota Bogor, waktu paparan, frekuensi paparan, serta durasi paparan. Ada beberapa tahapan yang perlu dilakukan untuk memperoleh nilai RQ, yaitu identifikasi bahaya dari agen risiko partikulat, analisis dosis-respon berupa Reference Concentration (RfC), analisis pajanan yang diperoleh berdasarkan variabel antropometri dan konsentrasi agen risiko serta karakteristik tingkat risiko. Karakteristik tingkat risiko menunjukkan nilai RQ TSP selalu paling tinggi diikuti PM10, dan terendah adalah RQ PM2,5 dengan nilai tertinggi TSP untuk penduduk laki-laki dan perempuan masing-masing sebesar 1,85 dan 1,53. Secara kumulatif, penduduk laki-laki dan perempuan di Tanah Sareal menghasilkan nilai RQ tertinggi masing-masing sebesar 4,44 dan 3,36. Sedangkan RQ kumulatif terendah diperoleh untuk penduduk laki-laki dan perempuan di Bogor Timur dengan nilai RQ 2,96 dan 2,54. Nilai RQ tiap agen risiko ataupun RQ kumulatif yang lebih dari 1 (RQ>1) dinyatakan memiliki atau terdapat risiko kesehatan sehingga perlu dikendalikan, sementara nilai RQ yang masing kurang dari satu dinyatakan tidak perlu dikendalikan tetapi perlu dipertahankan.


Kata kunci: partikulat, tingkat risiko, analisis pajanan, karakteristik antropometri, analisis risiko kesehatan lingkungan




Article Details

Section
RESEARCH ARTICLES

References

Sekretaris Jenderal Dewan Energi Nasional. (2016). Outlook Energi indonesia 2016.

Primadhyta, S. (2018). Terjerat di Lingkaran Setan Proyek Energi Terbarukan. Retrieved from https://www.cnnindonesia.com/ekonomi/20180125115623-85-271472/terjerat-di-lingkaran-setan-proyek-energi-terbarukan [1 Juni 2020]

Geem, Z. W., Kim, J. H. (2016). Optimal energy mix with renewable portfolio standards in Korea. Sustain, 8(5), 1–14.

Shmelev, S. E., Van Den Bergh, J. C. J. M. (2016). Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK. Renewable and Sustainable Energy Reviews, 60, 679–691.

Dang, M. (2013). Potential of Solar Energy in Tropics. International Journal of Engineering Science and Technology, 5(7), 1413–1418.

Zakiah, N. (2019). 7 Alasan Indonesia Tak Gunakan Pembangkit Listrik Tenaga Surya. Retrieved from https://kaltim.idntimes.com/tech/trend/nena-zakiah-1/alasan-indonesia-tidak-menggunakan-pembangkit-listrik-tenaga-surya-sebagai-sumber-energi-utama-regional-kaltim/7 [1 Juni 2020]

Satwika, N. A., Hantoro, R., Septyaningrum, E. , Mahmashani, A. W. (2019). Analysis of wind energy potential and wind energy development to evaluate performance of wind turbine installation in Bali, Indonesia. Journal of Mechanical Engineering and Sciences, 13(1), 4461–4476.

Sea, P. (2019). Harnessing Indonesia’s Solar Potential: Yellow is The New Black – IESR. Retrieved from http://iesr.or.id/harnessing-indonesias-solar-potential-yellow-is-the-new-black/ [1 Juni 2020]

Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A., Mainil, A., Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110, 316–321.

Ogbomo, O. O., Amalu, E. H., Ekere, N. N., Olagbegi, P. O. (2017). A review of photovoltaic module technologies for increased performance in tropical climate, Renewable and Sustainable Energy Reviews, 75, 1225-1238.

Schweiger, M., Herrmann, W., Gerber, A., Rau, U. (2017). Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio. IET Renewable Power Generation, 11(5), 558–565.

Dierauf, T., Growitz, A., Kurtz, S., Cruz, J. L. B., Riley, E., Hansen, C. (2013). Weather-Corrected Performance Ratio. National Renewable Energy Laboratory.

Lobaccaro, G., Frontini, F. (2014). Solar energy in urban environment?: how urban densification affects existing buildings. Energy Procedia, 48(1876), 1559–1569.

Roothaan, S., Williams, C., Guerrero, S., Acioli, P. (2012). Optimization of Small Scale Wind Turbine in Urban Areas. Paper Presented at 2012 Society for Advancement of Hispanics/Chicanos and Native Americans in Science National Conference.

Grauthoff, M. (1991). Utilization of wind energy in urban areas - Chance or utopian dream? . Energy and Buildinf, 16(1–2), 517–523.

Lu, L., Ip, K. Y. (2009). Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong. Renewable and Sustainable Energy Reviews, 13(2), 450–461.

Bahaj, A. S., Myers, L., James, P. A. B. (2007). Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings. Energy and Buildings, 39(2), 154–165.

Budi, K, (2018). Perguruan Tinggi Diajak Kembangkan Renewal Energy. Retrieved from https://edukasi.kompas.com/read/2018/02/02/15000031/perguruan-tinggi-diajak-kembangkan-renewal-energy [17 Mei 2019]

The International Renewable Energy Agency. (2016). Cities, towns & renewable energy: Yes in my front yard.

Portal Resmi Provinsi DKI Jakarta. (2008). Geografis Jakarta | Portal Resmi Pemerintah Provinsi DKI Jakarta. Retrieved from https://jakarta.go.id/artikel/konten/55/geografis-jakarta [1 Juni 2020]

Badan Pusat Statistik Kota Administrasi Jakarta Selatan. (2020). Kota Administrasi Jakarta Selatan Dalam Angka 2020.

A-Wing International. (Tuesday, 2 Jun 2020). AWI-E1000T - A-Wing International Small Wind Turbines. Retrieved from http://www.awing-i.com/english/1kW_wind_turbine.html#

Azet Surya Lestari. (Friday, 17 May 2019). Monocrystal ASL M5-200 V2016.05.08, Retrieved from http://www.azetsurya.id/page-prod-modulsurya-detail.php#

Vivint Solar Learning Center. (Wednesday, 3 Jun 2020). How to Calculate Solar Panel Output. Retrieved from https://www.vivintsolar.com/learning-center/how-calculate-solar-panel-output

Kummer, J. (Tuesday, 2 Jun 2020). Wind Turbine Power Calculator. Retrieved from https://rechneronline.de/wind-power/

Kummer, J. (Tuesday, 2 Jun 2020). Air density calculator. Retrieved from https://rechneronline.de/barometer/luftdichte.php

Carbon Fund. (Thursday, 16 May 2019). How We Calculate. Retrieved from https://carbonfund.org/how-we-calculate/

U.S. Energy Information Administration. (Thursday, 16 May 2019). How much carbon dioxide is produced when different fuels are burned?. Retrieved from https://www.eia.gov/tools/faqs/faq.php?id=73&t=11

Fogler, H. S., Steven, E. L., Rizzo, B. (2013). Strategies for Creative Problem Solving 3rd Edition: Prentice Hall.

El-Ali, A., Moubayed, N., Outbib, R. (2007). Comparison between solar and wind energy in Lebanon. Paper Presented 9th International Conference on Electrical Power Quality and Utilisation.

Badan Meteorologi Klimatologi dan Geofisika. (Tuesday, 2 Jun 2020). DATA ONLINE - PUSAT DATABASE – BMKG. Retrieved from http://dataonline.bmkg.go.id/data_iklim

Sutianto, F. B. (2016). Awet 25 Tahun, Panel Surya Tak Perlu Ongkos Perawatan. Retrieved from https://finance.detik.com/energi/d-3132787/awet-25-tahun-panel-surya-tak-perlu-ongkos-perawatan [17 Mei 2019]

Rivaldhi, Y., Nasirudin, A. (2012). Analisa Teknis dan Ekonomis Pemasangan Wind Turbine Sebagai Penghasil daya untuk Sistem Penerangan Pada Kapal Tanker 6500 DWT. Retrieved from http://digilib.its.ac.id/public/ITS-paper-19897-4107100066-Paper.pdf [17 Mei 2019]

Vibrasindo, (Friday, 17 May 2019). Perawatan Secara Rutin Meminimalisir Getaran Pada Turbin. Retrieved from http://www.vibrasindo.com/blogvibrasi/detail/130/perawatan-secara-rutin-meminimalisir-getaran-pada-turbin

Milborrow, D., (2010). Breaking down the cost of wind turbine maintenance | Windpower Monthly. Retrieved from https://www.windpowermonthly.com/article/1010136/breaking-down-cost-wind-turbine-maintenance [17 Mei 2019]

Zuhri, S. (2018). Inilah Kondisi Kelistrikan di Indonesia Saat Ini - Ekonomi Bisnis.com. Retrieved from https://ekonomi.bisnis.com/read/20180130/44/731989/inilah-kondisi-kelistrikan-di-indonesia-saat-ini- [17 Mei 2019]

Direktorat Jenderal Ketenagalistrikan Kementrian Energi dan Sumber Daya Mineral. (2017), Statistik Ketenagalistrikan 2017.

U.S. Energy Information Administration. (2016). Carbon Dioxide Emissions Coeffients. Retrieved from https://www.eia.gov/environment/emissions/co2_vol_mass.php [17 Mei 2019]

Redlitz, H. (2016). The Pros And Cons Of Wind And Solar Energy. Retrieved from https://greenfuture.io/solar/wind-vs-solar-energy/ [17 Mei 2019]

Wahyuni, S. (Friday, 17 May 2019) Pembangkit Listrik Tenaga Angin. Retrieved from https://www.academia.edu/7806434/I._PEMBANGKIT_LISTRIK_TENAGA_ANGIN

Sasongko, F. (2009). Dampak Lingkungan Pembangkit Listrik Tenaga Angin | Konversi ITB,” 2009. Retrieved from https://konversi.wordpress.com/2009/03/01/dampak-lingkungan-pembangkit-listrik-tenaga-angin/ [17 Mei 2019]

Oey, I. K. W. (2016). Dampak Negatif Panel Surya Terhadap Lingkungan. Retrieved from http://perceptionistheasnwer.blogspot.com/2016/12/dampak-negatif-panel-surya-terhadap.html