Peningkatan Kualitas Air Baku dari Sungai Surabaya dengan Proses Biofiltrasi

Main Article Content

Nusa Idaman Said
Wahyu Widayat
Rudi Nugroho



Surabaya River is a source of raw water for the needs of the community in Surabaya and its surrounding areas, including for industrial and the Surabaya water supply company. Along with the rapid growth of settlements and the development of the industrial sector, the Surabaya River pollution level has increased so that the quality of the water does not meet the quality standards required as raw water for drinking water. The most potential parameter that causes the level of pollution is organic pollutants. The concentration of some water quality parameters including organic pollutants in the Surabaya River has exceeded class I water quality standards based on Government Regulation (PP) No. 82 of 2001, namely for allotment of raw water for drinking water. The purpose of this study was to improve the raw water quality such as parameters of suspended solids (TSS), organic substances, detergents and manganese (Mn) through the application of biofilter technology. The study was conducted by operating a biofilter pilot plant consisting of a lamella-type settling tank and a biofilter reactor filled with wasp-type nesting media. The results showed that the biofilter process used can reduce the concentration of TSS, organic matter, detergents and Mn in raw water. In general, the longer the hydraulic residence time (HRT) in the biofilter pilot plant, the greater the efficiency of removing TSS, organic matter, and detergent in raw water. The experiments results at the conditions of the shortest total HRT of 81 minutes, including HRT of 36 minutes in the settling tank and HRT of 45 minutes in the biofilter reactor, could obtain TSS removal efficiency of 46.92%, 15.97% for organic matter, and 55% for detergent, where the concentration of these parameters meets the quality standards for drinking water.

Keywords: biofiltration, HRT, drinking water, water quality


Sungai Surabaya merupakan sumber air baku untuk kebutuhan masyarakat di wilayah Surabaya dan sekitarnya, termasuk untuk kebutuhan industri dan air baku PDAM kota Surabaya. Seiring pesatnya pertumbuhan pemukiman dan perkembangan sektor industri, mengakibatkan tingkat pencemaran Sungai Surabaya semakin tinggi sehingga kualitas airnya tidak memenuhi ketentuan baku mutu yang dipersyaratkan sebagai air baku air minum. Parameter yang paling potensial menyebabkan tingkat pencemaran tersebut adalah polutan organik. Konsentrasi beberapa parameter kualitas air termasuk polutan organik di sungai Surabaya telah melebihi baku mutu air kelas I berdasarkan Peraturan Pemerintah (PP) No 82 tahun 2001, yakni untuk peruntukan air baku air minum. Tujuan dari penelitian ini adalah untuk melakukan peningkatan kualitas air baku seperti parameter padatan tersuspensi (TSS), zat organik, deterjen dan mangan (Mn) melalui penerapan teknologi biofilter. Penelitian dilakukan dengan mengoperasikan pilot plant biofilter yang terdiri dari bak pengendap tipe lamella dan reaktor biofilter yang diisi dengan media plastik tipe sarang tawon. Hasil penelitian menujukkan bahwa proses biofilter yang digunakan dapat menurunkan konsentrasi TSS, zat organik, deterjen dan Mn di dalam air baku. Secara umum semakin lama waktu tinggal di dalam pilot plant biofilter, efisiensi penghilangan TSS, zat organik, dan deterjen di dalam air baku semakin besar. Hasil percobaan pada kondisi total waktu tinggal terpendek (total HRT) 81 menit, meliputi HRT di bak pengendap 36 menit dan HRT di reaktor biofilter 45 menit, didapatkan efisensi penghilangan TSS 46,92 %, zat organik 15,97 %, dan deterjen 55 %, dimana konsentrasi parameter-parameter tersebut memenuhi baku mutu untuk air minum.

Kata kunci: biofiltrasi, HRT, air minum, kualitas air

Article Details

Author Biography

Nusa Idaman Said, Pusat Teknologi Lingkungan-BPPT



Priyono T.S.C., E. Yuliani, R. W. Sayekti. “ (2013). Studi Penentuan Status Mutu Air Di Sungai Surabaya untuk Keperluan Bahan Baku Air Minumâ€.Jurnal Teknik Pengairan, Volume 4, Nomor 1 , hlm 53–60.

Annonim. (2012). Profil Keanekaragaman Hayati Kota Surabaya. BLH kota Surabaya.

Annonim. (2001). PP Nomor 82 Tahun 2001 Tentang Pengendalian pencemaran AIr. Kementerian Lingkungan Hidup. Jakarta.

Annonim. (2017). Laporan Pemantauan Kualitas Air Kali Suarabaya Tahun 2015-2017. Perum Jasa Tirta 1 Malang.

Crittenden J.C., Trussell R.R., Hand D.W. , Howe K.L., Tchobanoglous G., MWH’s (2012). Water Treatment: Principles and Design, third ed., John Wiley and Sons, Hoboken, NJ.

Ohar Z., Ostfeld A. (2014). “Optimal design and operation of booster chlorination stations layout in water distribution systemsâ€. Water Res. 58.

Hua G., Yeats S.A. (2010). “Control of Trihalomethanes in Wastewater Treatment.†Florida Water Resources Journal.

James B.B. , Todd M.E. , Ratanesh K.S. , Michael D.W., Saurabh C. (2015). Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006). Sci. Total Environ. 521–522.

S.W. Krasner, Philos. Trans. (2009). “The formation and control of emerging disinfection by-products of health concernâ€. A Math. Phys. Eng. Sci. 367 (2009) 4077.

Nieuwenhuijsen M.J., Martinez D., Grellier J., Bennett J., Best N., Iszatt N., Vrijheid M., Toledano M.B., (2009). Chlorination disinfection by-products in drinking water and congenital anomalies: review and meta-analyses. Environ. Health Perspect. 117.

Platikanov S., Martin J., Tauler R. (2012). Linear and non-linear chemometric modeling of THM formation in Barcelona's water treatment plant. Science of The Total Environment. 432 (2012).

Krasner S.W., Weinberg H.S. , Richardson S.D., Pastor S.J. , Chinn R. , Sclimenti M.J., Onstad G.D., Thruston A.D. (2006). Occurrence of a new generation of disinfection byproduct. Environ. Sci. Technol. 40.

Richardson S.D., Plewa M.J., Wagner E.D., Schoeny R., Demarini D.M. (2007). “Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for researchâ€. Mutat. Res. 636.

Grellier J., Bennett J., Patelarou E., Smith R.B., Toledano M.B., Rushton L., Briggs D.J., Nieuwenhuijsen M.J. (2010). Exposure to disinfection by-products, fetal growth, and prematurity: a systematic review and meta-analysis. Epidemiology 21 (3).

Craun,G.F. (1988). Surface water supplies and health. Journal American Water Works Association. 80:40-52.

Khan M.M.T. , Lewandowski Z. , Takizawa S. , Yamada K. , Katayama H. , Yamamoto K., Ohgaki S. (2009). Continuous and efficient removal of THMs from river water using MF membrane combined with high dose of PAC. Desalination 249.

Linlin W. , Xuan Z., Meng Z. (2011). Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge. Chemosphere 83.

Said, N.I. (2006). Aplikasi Proses Biofiltrasi Dan Ultrafiltrasi Untuk Pengolahan Air Minum. JURNAL AIR INDONESIA, Volume 2, Nomor 1.

Graham Q., Karen P. (2016). Biological Filtration, ï¬ltration/bioï¬lter.

Said, N.I. (2010). Teknologi Biofiltrasi Dan Ultrafiltrasi Untuk Pengolahan Air Minum. Penerbit : Pusat Teknologi Lingkungan, BPPT. 2010.

Han Q., Yan H., Zhang Z., Xue N., Wang Y., Chu Y., Gao B. (2015). Trihalomethanes (THMs) precursorfractions removal by coagulation and adsorption for biotreated municipal wastewater : Molecular weight, hydrophobicity/ hydrophily and fluorescence. Journal of Hazardous Materials. 297.

Pramanik B.K., Choo K.H., Pramanik S.K., Suja F., Jegatheesan V. (2015). Comparisons between biological filtration and coagulation processes for the removal of dissolved organic nitrogen and disinfection by-products precursors. International Biodeterioration and Biodegra-dation. 104.

Simon F.X., Rudé E., Llorens J., Baig S. (2013). Study on the removal of biodegradable NOM from seawater using bioï¬ltration Desalination. 316.

Regnery, J. Barringer, A.D. Wing, C. Hoppe-Jones, J. Teerlink, J.E. Drewes, (2015). Start-up performance of a full-scale riverbank filtration site regarding removal of DOC, nutrients, and trace organic chemicals. Chemosphere 127.

Thurman E.M., Organic Geochemistry of Natural Waters, Martinus Nijhoff/Dr. W. (1985). Junk Publishers, Dordrecht, Netherlands.

Zhang F., Wang Y., Chu Y., Gao B., Yue Q., Yang Z., Li Q. (2013). “Reduction of organic matter and trihalomethane formation potential in reclaimed water from treated municipal wastewater by coagulation and adsorptionâ€. J. Chem. Eng. 233

Bove G.E., Rogerson P.A., Vena J.E. (2007). “Case control study of the geographic variability of exposure to disinfectant by-products and risk for rectal cancerâ€. Int. J. Health Geogr. 6.

Villanueva C.M., Cantor K.P., Grimalt J.O., Malats N., Silverman D., Tardon A., Garcia-Closas R., Serra C., Carrato A., Castano-Vinyals G., Marcos R., Rothman N., Real F.X., Dosemeci M. , Kogevinas M. (2007). “Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in poolsâ€. Am. J. Epidemiol. 165.

Most read articles by the same author(s)

> >>