Teknologi Hidrotermal Sebagai Solusi Cepat Pengolahan Sampah Organik Menjadi Pupuk

Dian Purwitasari Dewanti, Wiharja Wiharja, Muhammad Hanif, Rudi Nugroho

Abstract


ABSTRACT

Geostech Building, as an office and laboratory facility, requires a source of clean water from groundwater related to the limited supply of clean water from the PDAM. Due to the needs of freshwater from groundwater origin, data and information are needed regarding the potential groundwater in the area, including aquifer configuration, depth, and groundwater potential. The presence of groundwater is not distributed through every area, and it's related to the geological and geohydrological conditions. One of the geophysical methods that can describe subsurface is 2D geoelectric methods. This method can distinguish and analyze rock types, geological structures, groundwater aquifers, and other important information based on the characteristics of the electricity of rocks by looking at the value of the type of resistance. In this measurement, the Wenner Alpha configuration has been used, where the arrangement of A-B current electrodes and M-N potential electrodes have constant spacing. From the measurement results, it can be interpreted that there is a low resistivity layer containing porous groundwater as an aquifer. Based on regional geological data, it has been estimated that this layer is in the form of sandy tuff (0-1.5 ohm-m). The exploitation of groundwater with drilling is expected to reach the aquifer's upper layer at depth, starting from 11.5-13 meters. The groundwater aquifer thickness cannot be ascertained because of the penetration of the lower depth of 2D geoelectric measurements truncated by the constraint of a maximum stretch of cable. The upper layer of the aquifer contains a turned layer of fine tufa and medium tuff, which is impermeable, coarse tuff, and mixed soil with varying thickness at the upper layer.

Keywords: 2D geoelectric, aquifer, potential groundwater, Geostech  

ABSTRAK

Gedung Geostech sebagai sarana perkantoran dan laboratorium memerlukan sumber air bersih dari airtanah terkait dengan terbatasnya suplai air bersih dari PDAM. Kebutuhan air bersih berasal dari airtanah, maka diperlukan data dan informasi mengenai kondisi potensi airtanah di kawasan tersebut termasuk konfigurasi akuifer, kedalaman, dan potensi airtanahnya. Keberadaan airtanah tidaklah merata untuk setiap tempat dan sangat terkait dengan kondisi geologi dan geohidrologinya. Salah satu metode geofisika yang dapat memberikan gambaran kondisi bawah permukaan adalah dengan metode geolistrik 2D. Metode ini dapat membedakan dan menganalisis jenis batuan, struktur geologi, akuifer airtanah, dan informasi penting lainnya berdasarkan sifat kelistrikan batuan dengan melihat nilai tahanan jenisnya. Dalam pengukuran ini digunakan konfigurasi Wenner Alpha, dimana susunan elektroda arus A dan B dan elektroda potensial M dan N mempunyai spasi yang konstan. Dari hasil pengukuran dapat diinterpretasikan adanya lapisan dengan resistivitas rendah yang mengandung airtanah dan bersifat porous sebagai akuifer. Berdasarkan data geologi regional diperkirakan lapisan ini berupa tuf pasiran (0-1,5 ohm-m). Pengambilan airtanah dengan pemboran diperkirakan akan mengenai batas atas lapisan akuifer pada kedalaman 11,5-13 meter. Ketebalan akuifer airtanah tidak bisa dihitung karena penetrasi kedalaman pengukuran geolistrik 2D terbatasi oleh bentangan elektroda di permukaan. Lapisan di atas akuifer merupakan lapisan selang-seling tuf halus dan tuf sedang yang kedap air, tuf kasar, dan pada bagian paling atas merupakan tanah urugan dengan ketebalan bervariasi.

Kata kunci: Geolistrik 2D, akuifer, potensi airtanah, Geostech

 


Full Text:

PDF

References


Keputusan Kepala Dinas Lingkungan Hidup Provinsi Daerah Khusus Ibukota Jakarta Nomor 699 Tahun 2017 tentang Timbulan, Komposisi, dan Karakteristik Sampah di TPS dan TPST Bantargebang.

Sahwan, F. L. (2010). Kualitas Produk Kompos dan Karakteristik Proses Pengomposan Sampah Kota Tanpa Pemilahan Awal.

He, W., LI, G., Kong, L., Wang. H., Huang, J., & Xu, J. (2008). Application of hydrothermal reaction in resource recovery of organic wastes. Volume 52, Issue 5, March 2008, Pages 691-699. https://doi.org/10.1016/j.resconrec.2007.11.003.

Prawisudha, P., Azka, G.R., Triyono,B., & Pasek, A.D. (2018). Multi-production of Solid Fuel and Liquid Fertilizer from Organic Waste by Employing Wet Torrefaction Process. AIP Conference Proceedings 1984, 030008 (2018); https://doi.org/10.1063/1.5046629 Published Online: 25 July 2018.

Idowu, I. M. (2018). Hydrothermal Carbonization of Food Waste for Nutrient Recovery and Reuse. Master’s Thesis. University of South Carolina.

Idowu, I. M., Li, L., Flora, J.R.V., Pellechia, P.J., Darko, S. A., Ro, K.S., & Berge, N.D. (2017). Hydrothermal Carbonization of Food Waste for Nuntrient Recovery and Reuse. Waste Management 69

Novita DM., & Damanhuri E. (2010). Perhitungan Nilai Kalor Berdasarkan Komposisi Dan Karakteristik Sampah Perkotaan Di Indonesia Dalam Konsep Waste To Energy. Jurnal Teknik Lingkungan Volume 16 Nomor 2, Oktober 2010 (hal. 103-114)

P.E. Savage, R.B. Levine, & C.M Huelsman,. (2010). Hydrothermal Processing of Biomass. In: Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Ch. 8. RSC Publishing, Cambridge.

Bimantoro, E.P. (2016). Pengaturan Konsumsi Bahan Bakar Pada Virtual Plant Boiler PLTU Menggunakan Kontroler Linear Quadratic Regulator. Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS)

Dewanti, D. P., & Sulaiman, A. (2019). Penentuan Temperatur Optimal Pembakaran Boiler untuk Karbonisasi Hidrotermal Sampah Organik Melalui Model Semi-Analitik Perpindahan Panas. Jurnal Teknologi Lingkungan, 20(2), 291-298.

Junting, Z., Guangming, Li., Wenzhi, he., Juwen, Huang., & Haochen, Zhu. (2016). Hydrothermal carbonization (HTC) for recovery of organic fractions in Municipal Solid Waste (OFMSW).

Robbiani, Z. (2013). Hydrothermal carbonization of biowaste/fecal sludge. Conception and construction of a HTC prototype research unit for developing countries. Department of Mechanical Engineering ETHZ in collaboration with Eawag/Sandec

Lian-hai, REN., Yong-feng, NIE., Jiann-guo, LIU., Yi-ying, JIN, & Lu, Sun. (2006). Impact of hydrothermal process on the nutrient ingredients of restaurant garbage. Journal of Environmental Sciences. Volume 18, Issue 5, September–October 2006, Pages 1012-1019.

Krysanova, K.O., Zaichenko, V.M., Sychev, G.A., Is’emin, R. L., Krylova, A.Y. (2019). Effect of Temperature on the Hydrothermal Carbonization of Organic Fertilizers with the Production of Carbon Fuel. Solid Fuel Chemistry volume 53, pages105–10.

Sundari, E., Sari E., & Rinaldo, R. (2012). Pembuatan Pupuk Organik Cair Menggunakan Bioaktivator Biosca dan EM14. Prosiding SNTK Topi 2012. ISSN. 1907-0500.

Funke, A. & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. s.l. : Biofuels, Bioprod. Bioref. 4:160-177, 2010.

Trivana, L. & Pradhana, A.Y. (2017). Optimalisasi Waktu Pengomposan dan Kualitas Pupuk Kandang dari Kotoran Kambing dan Debu Sabut Kelapa dengan Bioaktivator PROMI dan Orgadec. Jurnal Sain Veteriner 35(1).

Abelleira, J., Perez-Elvira, S.I., Sanchez-Oneto, J., Portela, J.R. & Nebot, E. (2012). Advanced Thermal Hydrolysis of secondary sewage sludge: A novel process combining thermal hydrolysis and hydrogen peroxide addition. Resources, Conservation and Recycling, 59, 52– 57.

Falco, C., Baccile, N. & Titirici, M.M. (2011). Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 13, 3273-3281.

Fakkaew, K. (2016). Evaluation of Hydrothermal Carbonization Reactions for Faecal Sludge Treatment and Hydrochar Production. Asian Institute of Technology School of Environment, Resources and Development Thailand

Gao, J., Wang, X., Wang, J., Li, X., Cheng, J., Yang, H., & Chen, H. (2013). Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy. Volume 58, 1 September 2013, Pages 376-383

Ulbrich, M., Prebl, D., Frendt, S., Gaderer, M., & Spliethoff, H. (2017). Impact of HTC reaction conditions on the hydrochar properties and CO2 gasification properties of spent grains. Fuel Processing Technology Volume 167, 1 December 2017, Pages 663-669.

Wang, M., Zhang, Bo., Cai, C., Xin, Yanjun., & Liu, H. (2018). Acidic hydrothermal treatment: Characteristics of organic, nitrogen and phosphorus releasing and process optimization on lincomycin removal from lincomycin mycelial residues. Chemical Engineering Journal 336 (2018) 436-444.

Siboro, E.S., Surya, E., & Herlina, N. (2013). Pembuatan Pupuk Cair Dan Biogas Dari Campuran Limbah Sayuran. Jurnal Teknik Kimia USU, Vol. 2, No. 3




DOI: https://doi.org/10.29122/jtl.v21i2.3512

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.