Distribusi Spasial, Sumber Pencemaran, dan Kajian Risiko Ekologi Polisiklik Aromatik Hidrokarbon (PAH) dalam Sedimen Pesisir di Pulau Bintan, Indonesia

Deny Yogaswara, Ita Wulandari, Khozanah Khozanah, Edward Edward, Dede Falahudin

Abstract


ABSTRACT

Bintan Island is the small island in the Riau Archipelago which borders Singapore and Malaysia. Its water is crossed by international shipping lines. Therefore, water quality in this area is potentially polluted by marine activities. The present study aimed to evaluate the concentration, spatial distribution, and assessment of ecological risks of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from selected coastal water of Bintan. Surface sediments in this study were extracted by using the ultrasonic system and determined with GCMS. The data were visualized with ArGIS software for spatial distribution mapping, applied ratio diagnostic methods for the source of PAH contamination, and assess their ecological risk based on sediment quality guidelines. The results showed PAHs concentrations ranged from below the method detection limit (<DL) to 13.492 ng.g−1(dry weight) with the highest concentration of PAHs were detected at TJU 1 station as much as 13.492 ng.g-1. As many as seven types of PAHs were identified in Bintan water, they were Naphthalene (two rings), Fluorene and Anthracene (three rings); fluoranthene, Pyrene, Benzo (a) Pyrene and Chrysene (five rings). Based on diagnostic ratios, the sources of PAHs in this coastal area were mainly from pyrogenic origins. Ecological risk assessment has shown that the average value of ∑10 PAH in Bintan waters (5.855 ng.g-1) is lower than the corresponding ERL, ERM, TEL, and PEL value indicating that the adverse biological effects of PAHs are generally low.

Keywords: Polycyclic Aromatic Hydrocarbons (PAHs), Distribution, Pollution, Bintan Waters

ABSTRAK

Pulau Bintan merupakan pulau kecil di Kepulauan Riau yang berbatasan langsung dengan negara Singapura dan Malaysia serta perairannya dilintasi oleh jalur pelayaran internasional sehingga potensi pencemaran dari aktivitas di laut sangat tinggi. Penelitian ini bertujuan untuk mengukur konsentrasi, distribusi spasial, sumber asal pencemaran dan analisis resiko lingkungan senyawa PAH dalam sedimen permukaan di perairan pesisir Pulau Bintan. Sedimen permukaan diekstraksi dengan sistem ultrasonik dan dianalisa akhir dengan GCMS. Data senyawa PAH diolah dengan software ArGIS untuk membuat peta distribusi spasial, dianalisa dengan metode diagnosa rasio untuk mengetahui sumber pencemarnya dan dibandingkan dengan nilai baku mutu sedimen untuk mengkaji resiko ekologinya. Hasil analisis di setiap stasiun sampling di Muara Pengudang dan Tanjung Uban menunjukkan konsentrasi Total PAH (TPAH) berkisar antara < limit deteksi alat (1 ngg-1) sampai 13,492 ng.g-1 berat kering dengan konsentrasi tertinggi terdeteksi di stasiun TJU 1 yaitu sebesar 13,492 ng.g-1.  Sebanyak tujuh jenis senyawa PAH teridentifikasi di perairan Bintan ini diantaranya Naphthalene, (dua cincin benzene), Fluorene dan Anthracene (tiga cincin benzene); Fluoranthene, Pyrene, Benzo (a) Pyrene, dan Chrysene (empat cincin benzene). Berdasarkan analisa diagnosa rasio, sumber pencemaran PAH di perairan pesisir Bintan adalah berasal dari kombinasi antara sumber pirogenik. Analisis resiko lingkungan menunjukkan nilai rata-rata ∑10 PAH di perairan Bintan (5,855 ngg-1) masih rendah dibandingkan nilai ERL, ERM, TEL dan PEL, hal tersebut mengindikasikan bahwa efek biologis senyawa PAH secara umum rendah.

Kata kunci: Polisiklik Aromatik Hidrokarbon (PAH), Sebaran, Pencemaran, Perairan Bintan


Full Text:

PDF

References


Abdel-Shafy, H.I., & Mansour, M.S.M. (2015). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt Journal of Petroleum, https://doi.org/10.1016/j.ejpe.2015.03.011.

Deng, W., Li, X.G., Li, S.Y., Ma, Y.Y., & Zhang, D.H. (2013). Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis Marine Pollution Bulletin, 70(1–2), 266–273, https://doi.org/10.1016/j.marpolbul.2013.02.032.

Mu, L., Peng, L., Liu, X., Song, C., Bai, H., Zhang, J., Hu, D., He, Q., & Li, F. (2014). Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants Atmospheric Environment, 83, 202–210, https://doi.org/10.1016/j.atmosenv.2013.09.043.

Lithner, D., Larsson, A., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409(18), 3309–3324, https://doi.org/10.1016/j.scitotenv.2011.04.038.

Gu, Y.G., Lin, Q., Lu, T.T., Ke, C.L., Sun, R.X., & Du, F.Y. (2013). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in surface sediments from Nan’ao Island, a representative mariculture base in South China Marine Pollution Bulletin, 75(1–2), 310–316, https://doi.org/10.1016/j.marpolbul.2013.07.039.

Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin : a critical appraisal of PAH ratios as indicators of PAH source and composition .33, 489–515.

Yunker MB, & Macdonald RW. (2003). Petroleum biomarker sources in suspended particulate matter and sediments from the Fraser River Basin and Strait of .Organic Geochemistry, 34, 1525–1541, https://doi.org/10.1016/S0146-6380(03)00157-8.

Sun R, Sun Y, Li QX, Zheng X, Luo X, & Mai B. (2018). Science of the Total Environment Polycyclic aromatic hydrocarbons in sediments and marine organisms : Implications of anthropogenic effects on the coastal environment .Science of the Total Environment, 640–641, 264–272, https://doi.org/10.1016/j.scitotenv.2018.05.320.

Mujahidawati. (2018). Kajian sumberdaya pesisir dan laut akibat pencemaran di perairan kecamatan gunung kijang kabupaten bintan .Institut Pertanian Bogor.

Wentworth CK. (1922). A Scale of Grade and Class Terms for Clastic Sediments .Journal of Geology, 377–392.

Blair TC, & Mcpherson JG. (1999). Grain-size and textural classification of coarse sedimentary particles GRAIN-SIZE AND TEXTURAL CLASSIFICATION OF COARSE SEDIMENTARY PARTICLES .Journal of Sedimentary Research, 69(January), 6–19, https://doi.org/10.2110/jsr.69.6.

Yamaguchi C, & Lee W. (2010). A cost effective , sensitive , and environmentally friendly sample preparation method for determination of polycyclic aromatic hydrocarbons in solid samples .Journal of Chromatography A, 1217(44), 6816–6823, https://doi.org/10.1016/j.chroma.2010.08.055.

Xue R, Chen L, Lu Z, Hang J, Yang H, & Zhang J. (2016). Spatial distribution and source apportionment of PAHs in marine surface sediments of Prydz Bay, East Antarctica .Environmental Pollution, 1–9, https://doi.org/10.1016/j.envpol.2016.05.084.

Long ER, Bin C, Smith SL, & Calder FD. (1995). Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments .19(1), 81–97.

Macdonald, D.D., Carr, R.S., Calder, F.D., Long, E.R., & Ingersoll, C,G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters .Ecotoxicology, 5, 253–278.

Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T.A., & Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils .Chemosphere, 72(10), 1594–1601, https://doi.org/10.1016/J.CHEMOSPHERE.2008.04.021.

Akyüz M, & Çabuk H. (2010). Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey .Science of The Total Environment, 408(22), 5550–5558, https://doi.org/10.1016/j.scitotenv.2010.07.063.

Ravindra, K., Sokhi, R., & Van, G. R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation .Atmospheric Environment, 42(13), 2895–2921, https://doi.org/10.1016/J.ATMOSENV.2007.12.010.

De La Torre-Roche, R.J., Lee, W.Y., & Campos-Díaz, S.I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region .Journal of Hazardous Materials, 163(2–3), 946–958, https://doi.org/10.1016/J.JHAZMAT.2008.07.089.

Katsoyiannis, A., Terzi, E., & Cai, Q.Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? .Chemosphere, 69(8), 1337–1339, https://doi.org/10.1016/J.CHEMOSPHERE.2007.05.084

Gu, Y., Li, H., & Lu, H. (2017). Polycyclic aromatic hydrocarbons ( PAHs ) in surface sediments from the largest deep plateau lake in China : Occurrence , sources and biological risk .Ecological Engineering, 101, 179–184, https://doi.org/10.1016/j.ecoleng.2017.02.007.

Gustafsson, O., Haghseta, F., Chan, C., Macfarlane, J., & Gschwend, P.M. (1997). Quantification of the Dilute Sedimentary Soot Phase : Implications for PAH Speciation and Bioavailability .31(1), 203–209.

Lohmann, R., Macfarlane, J.K., & Gschwend, P.M. (2005). Importance of Black Carbon to Sorption of Native PAHs , PCBs , and PCDDs in Boston and New York Harbor Sediments .39(1), 141–148.

Lease, C.W.M., Bentham, R.H., Gaskin, S.E., & Juhasz, A.L. (2011). Isolation and Identification of Pyrene Mineralizing Mycobacterium spp. from Contaminated and Uncontaminated Sources .Applied and Environmental Soil Science, 2011(January 2014), 1–11, https://doi.org/10.1155/2011/409643.

Abo-State, M.A.M, El-Dars, F.M.S.E., & Abdin, B.A. (2018). Isolation and Identification of Pyrene Degrading Bacteria and its Pathway from Suez Oil Processing Company, Suez, Egypt. .Journal of Ecology of Health & Environment, 6(2), 63–76, https://doi.org/10.18576/jehe/060202.

Tobiszewski, M. & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources .Environmental Pollution, 162, 110–119, https://doi.org/10.1016/j.envpol.2011.10.025.

Baek, S.O., Field, R.A., Goldstone, M.E., Kirk, P.W., Lester, J.N., & Perry, R. (1991). A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior .Water, Air, and Soil Pollution, 60, 279–300.

Munawir, K., & Yogaswara, D. (2018). Concentrations of PAHs (Polycyclicaromatic Hydrocarbons) Pollutant in Sediment of The Banten Bay .Bull Mar Geol, https://doi.org/10.32693/bomg.32.2.2017.377.

Pongpiachan, S., Hattayanone, M., Tipmanee, D., Suttinun, O., & Khumsup, C. (2017). Chemical characterization of polycyclic aromatic hydrocarbons (PAHs) in 2013 Rayong oil spill-affected coastal areas of Thailand .Environmental Pollution, xxx, 1–11, https://doi.org/10.1016/j.envpol.2017.09.096.




DOI: http://dx.doi.org/10.29122/jtl.v20i2.3547

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.