ANALISIS KEKUATAN LENTUR STATIS DAN DINAMIS BANTALAN SINTETIK UNTUK JALAN KERETA API

Authors

  • Puguh Triwinanto BPPT

DOI:

https://doi.org/10.29122/mipi.v11i2.2543

Abstract

Tingginya biaya perawatan dan permasalahan lingkungan dari bantalan kayu, beton, dan baja, memacu peneliti untuk melakukan penelitian bantalan alternatip. Salah satunya adalah bantalan komposit. Pada saat ini pasar global bantalan komposit dan juga bantalan sintetik meningkat sebab mempunyai keunggulan mencakup : high strength-to- weight ratio, tahan korosi, tahan kelembaban dan serangga serta tidak menghantarkan panas dan listrik.

Material tradisional yang digunakan untuk bantalan jalan kereta api adalah kayu, beton, dan baja. Bantalan beton tidak sesuai dipasang pada jembatan baja dan yang sesuai adalah bantalan kayu. Bantalan kayu mempunyai umur pakai pendek, mahal, dan langka.

Di Indonesia wacana penggunaan bantalan sintetik sudah diusahakan dalam 10 tahun terakhir. Pada dua tahun terakhir dimulai riset dan pengembangan bantalan sintetik. Dari hasil pengujian dan analisis spesimen bantalan sintetik memenuhi syarat kekuatan lentur statis dan dinamis sesuai standar JIS E 1203:2007. Dengan demikian bantalan hasil hasil riset ini dapat dilanjutkan uji track, dimana bantalan sintetik diuji coba untuk dipasang pada jalan kereta api.

Author Biography

Puguh Triwinanto, BPPT

B2TKS

References

Crawford RH, Greenhouse Gas Emissions Embodied in Reinforced Concrete and Timber Railway Sleepers, Environ Sci Technol 2009:43-3885-90.

Rail Corp Engineering Specification, SPC 232: Concrete Sleepers, Australia, 2012.

ARTC Sleepers – Usage and Installation Standards TCS 10 Engineering (Track) Australian Rail Track Corporation, 2009.

T.Y Lin dan Ned H. Burn, Desain Struktur Beton Prategang, Jilid 1, Binarupa Aksara, 2000.

Kaewunruen S., Sleepers and Fastenings, Track Design Fundamental, Rail Engineering Course, Rail Corporation, 2010.

GangaRao HVS, Taly N, Vijay VP, Reinforced Concrete Design With FRP Composites, CRC Press, 2007.

JIS E 1203 : 2007, Synthetic Sleeper, Made from Fiber Reinforced Foamed Urethane, Japanese, 2007

Ferdous W, Manalo A, Van Erp G, Aravintan Th, Kaewunruen S, Remennikov A, Review – Composite Railway Sleepers – Recent developments, Challenges, Journal Composite Structure 134, Elsevier, 2015, 158-168.

Manalo A, Aravinthan T, Karunasena W, Stevens N, Analysis of a Typical railway Turnout Sleeper System Using Grillage Beam Analogy, Finite Element Analysis, December 2012: 48: 1376-91.

Kaewunruen S, Acoustic and Dynamic Characteristics of a Complex Urban Turnout using fibre-reinforced foamed urethane (FFU) Bearers, International Workshop on Rialway Noise, 2013.

Chattre R, Manoharan S, Satyanayarana PVV, Composite Sleepers for Bridges: Progress Till Date and Road Head, Pune, India, Indian Railway Institute of Civil Engineering.

Manalo A, Aravinthan T, Karunasena W, Ticoalu A, A Review of Alternative Materials for Replacing Existing Timber Sleepers, Composite Structure, Elsevier 2010:92:603-11.

Ghorbani A, Erden S, Polymeric Composite Railway Sleepers, Uluslar ArasibRayli Sistemler Muhendisligi Sempozyumu (ISERSE’13), 9-11 Ekim 2013, Karabuk, Tϋrkiye, 2013.

Takai H, Sato Y, Sato K, Japanese Twenty Five years Experiences and Standardization of Synthetic Sleeper, 2006.

Chattre R, Manoharan S, Satyanayarana PVV, Composite Sleepers for Bridges: Senior Proffesional Course Notes, Indian Railway Railway Institute of Civil Engineering.

Popov E. P., Mekanika Teknik, Alih bahasa Astamar Z., Penerbit Erlangga, 1996.

Degieck J, Paepegen WV, Fatigue Damage Modeling of Fiber-reinforced Composite Material: Review, Appl Mech Rev 2001: 54 279-300.

Triwinanto P., Static Bending Test of Synthetic Sleeper, Technical Report, No. 2017/B2TKS/0340 (A), June 2017.

Triwinanto P., Dynamic Bending Test of Synthetic Sleeper, Technical Report, No. 2017/B2TKS/0340 (B), July 2017.

Downloads

Published

2017-08-15