Membran Separasi Serat Berongga untuk Hemodialisis


  • Krisna Lumban Raja Pusat Aplikasi Teknologi Isotop dan Radiasi (PATIR) – BATAN



Polimer mempunyai aplikasi luas. Campuran heterogennya membentuk struktur fasa terpisah menjadi membran untuk membuat perangkat medis. Fungsi membran melakukan penghalangan selektif dengan aspek keragaman : tebal, struktur, diameter pori, muatan listrik, perpindahan partikel. Grup. Membran separasi adalah membran sintetis untuk pemisahan. Membuat membran separasi polimerik dibutuhkan kriteria polimer berdaya rekat rendah, berdaya tahan pembersihan tinggi, berkarakteristik rantai polimer saling cocok, harga murah, serta mudah diperoleh. Sifat kimia permukaan membran memberi konsekuensi pembasahan atau pencemaran yang mempengaruhi daya tahan membran. Konfigurasi membran separasi adalah silang aliran dan dead-end.Hukum Darcy merumuskan pemodelan yang pokok pada membran separasi dead end. Serat membran morfologinya keropos dan gaya pendorongnya perbedaan konsentrasi. Aliran nya silang dan modulnya menampung hingga 10.000 serat berdiameter 200 μm sampai 2500 μm. Pada dialisis, aliran darah dan dialisat berlawanan, agar pengeluaran zat-zat beracun maksimal. Aplikasi membran serat berongga untuk hemodialisis karena gagal ginjal kronis. Hakekat dialisis adalah memindahkan zat-zat racun dari metabolisme dan memperbaiki keseimbangan garam, air dan asam dalam darah. Status iptek terkini membran hemodialisis adalah pada ginjal buatan dari bahan hidup selain peralatan hemodialisis yang dapat berpindah-pindah, dibawa, dikenakan di badan, dan ditanam dalam tubuh.

Kata kunci : Membran, Sintetis, Separasi, Hemodialisis, Serat berongga.


Polymers have a wide range of uses. Their heterogenous blends form separated phase structures to become membranes for making medical devices. Membranes serve as selective barriers with various classifications such as thickness, structure, pore diameter, electric charged, particle transport, and in groups. A separation membrane is synthetically created for separation purpose. To make polymeric separation membranes require polymers that are low binding affinity, withstand the harsh cleaning conditions, suitable with properties of polymer chains, reasonable pricing, and easily obtainable. Two flow configurations of separation membranes are cross flow and dead-end filtrations. Darcy’s law formulates the main modeling equation for the dead end filtration. Hollow fiber separation membranes have porous morphology and driving force of concentration gradients. They have cross flows and their modules can contain up to 10.000 fibers ranging from 200 to 2500 μm in diameter. In dialysis, blood travels in the opposite direction with the dialysate to maximize the excretion of poisonous substances. A hollow fiber membrane application is for hemodialysis of chronic renal failure that causes physiological derangements. Actually dialysis is to remove toxic end-products of nitrogen metabolism and improve the balance of the salt, water, and acid-base derangements in blood. The current status of hemodialysis are the bio-artificial kidneys along with the development of mobile, portable, wearable and implantable hemodialysis devices.

Keywords : Membrane, Synthetic, Separation, Hemodialysis, Hollow-fiber.


Aebischer P., Ip T.K., Panol G., Galletti P.M., The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing. Life Support Syst. 1987;5:159–168.

Anzai N., Jutabha P., Kanai Y., Endou H.,

Integrated physiology of proximal tubular organic anion transport. Curr Opin Nephrol Hypertens. 2005;14:472–479. doi: 10.1097/01.mnh.0000170751. 56527.7e.

Araki, T., Tan-chong, Q., Shibayama, M.,

Structure and Properties of Multiphase Polymeric Materials, Marcel Dekker, Inc

Bayliss G., Danziger J., Nocturnal versus conventional haemodialysis: some current issues. Nephrol Dial Transplant. 2009; 24:3612–3617. doi: 10.1093/ndt/gfp491.

Boswell R.N., Yard B.A., Schrama E., van Es L.A., Daha M.R., van der Woude F.J., Interleukin 6 production by human proximal tubular epithelial cells in vitro: analysis of the effects of interleukin-1α (IL-1α) and other cytokines. Nephrol Dial Transplant. 1994;9:599–606.

Brenner B.M., Brenner and Rector's The Kidney. 8. Philadelphia: Saunders Elsevier; 2008.

Curthoys N.P., Godfrey S.S., Properties of rat kidney glutaminase enzymes and their role in renal ammoniagenesis. Curr Probl Clin Biochem. 1976;6:346–356.

Davenport A., Gura V., Ronco C., Beizai M., Ezon C., Rambod E. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet. 2007;370:2005–2010. doi: 10.1016/S0140-6736(07)61864-9. Farah T., Rensheng D., Min H., Sean L., Yao L., Ming N., Jackie Y. Y., and Daniele Z., Achievements and challenges in bioartificial kidney development. Available: http://

Fraser D.R., Kodicek E., Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970;228:764–766. doi: 10.1038/ 228764a0.

Gould S.E., Day M., Jones S.S., Dorai H., BMP-7 Regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 2002;61:51–60. doi: 10.1046/j.1523- 1755.2002.00103.x.

Gura V., Davenport A., Beizai M., Ezon C., Ronco C., β2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. Am J Kidney Dis. 2009;54:104–111. doi: 10.1053/j.ajkd.2009.02.006.

Gura V., Macy A.S., Beizai M., Ezon C., Golper T.A., Technical breakthroughs in the wearable artificial kidney (WAK) Clin J Am Soc Nephrol. 2009;4:1441–1448. doi: 10.2215/CJN.02790409.

Gura V., Ronco C., Davenport A., The wearable artificial kidney, why and how: from holy grail to reality. Semin Dial. 2009;22:13–17. doi: 10.1111/j.1525- 139X.2008.00507.x.

Gura V., Ronco C., Nalesso F., Brendolan A., Beizai M., Ezon C., Davenport A., Rambod E., A wearable hemofilter for continuous ambulatory ultrafiltration., Kidney Int. 2008;73:497–502. doi: 10.1038/

Humes H.D., Buffington D.A., MacKay S.M., Funke A.J., Weitzel W.F., Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999;17:451–455. doi: 10.1038/8626.

Humes H.D., MacKay S.M., Funke A.J., Buffington D.A., Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. 1999;55:2502– 2514. doi: 10.1046/j. 1523-1755. 999.00486.x.

Ip T.K., Aebischer P., Galletti P.M.,

Cellular control of membrane permeability. Implications for a bioartificial renal tubule. ASAIO Trans. 1988;34:351– 355.

Ip T.K., Aebischer P., Renal epithelial- cell-controlled solute transport across permeable membranes as the foundation for a bioartificial kidney. Artif Organs. 1989;13:58–65. doi: 10.1111/j.1525- 1594.1989.tb02833.x.

Jaber B.L., Finkelstein F.O., Glickman J.D., Hull A.R., Kraus M.A., Leypoldt J.K., Liu J., Gilbertson D., McCarthy J., Miller B.W., Moran J., Collins A.J., FREEDOM Study Group. Scope and design of the Following Rehabilitation, Economics and Everyday-Dialysis Outcome Measurements (FREEDOM) Study. Am J Kidney Dis. 2009;53:310–320. doi: 10.1053/j.ajkd.2008.07.013.

Klarenbach S., Manns B., Economic evaluation of dialysis therapies. Semin Nephrol. 2009;29:524–532. doi: 10.1016/j.semnephrol.2009.06.009.

Kliger AS., More intensive hemodialysis. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S121–S124. doi: 10.2215/CJN.02920509.

Kohn O.F., Coe F.L., Ing T.S., Solute kinetics with short-daily home hemodialysis using slow dialysate flow rate. Hemodial Int. 2010;14:39–46. doi: 10.1111/j.1542-4758.2009.00399.x.

Kraus M., Burkart J., Hegeman R., Solomon R., Coplon N., Moran J., A comparison of center-based vs. home- based daily hemodialysis for patients with end-stage renal disease. Hemodial Int. 2007;11:468–477. doi: 10.1111/ j.1542- 4758.2007.00229.x.

Lee Y.J., Lee Y.J., Han H.J., Regulatory mechanisms of Na+/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl. 2007;72:S27– S35. doi: 10.1038/

Lockridge RS Jr., Pipkin M., Short and long nightly hemodialysis in the United States. Hemodial Int. 2008;12(Suppl 1):S48–S50. doi: 10.1111/j.1542-4758. 2008.00296.x.

Mount D.B., Kwon C.Y., Zandi-Nejad K., Renal urate transport. Rheum Dis Clin North Am. 2006;32:313–331. doi: 10.1016/j.rdc.2006.02.006. vi.

Osada, Y., Nakagawa, T., Membrane Science and Technology, New York: Marcel Dekker, Inc,1992. Available: brane

Perry, R.H., Green D.H., Perry’s

Chemical Engineers’ Handbook,7th edition, McGraw-Hill, 1997. Available: brane

Pinnau, I, Freeman, B.D., Membrane Formation and Modification, ACS, 1999. Available: Artificial_membrane

Pierratos A., Ouwendyk M., Francoeur R., Vas S., Raj D.S., Ecclestone A.M., Langos V., Uldall R.. Nocturnal hemodialysis: three-year experience. JAm Soc Nephrol. 1998;9:859–868.

Prodjosudjadi W., Gerritsma J.S., Klar- Mohamad N., Gerritsen A.F., Bruijn J.A., Daha M.R., van Es L.A., Production and cytokine-mediated regulation of monocyte chemoattractant protein-1 by human proximal tubular epithelial cells. Kidney Int. 1995;48:1477–1486. doi:


Robert W. Hamilton, Principles of Dialysis

: Diffusion, Convection, and Dialysis Machines. Available : 01.ccc.QXD.pdf

Ronco C., Davenport A., Gura V., A wearable artificial kidney: dream or reality? Nat Clin Pract Nephrol. 2008; 4:604–605. doi: 10.1038/ncpneph0929.

Scott A., Portable home hemodialysis for kidney failure. Issues Emerg Health Technol. 2007;108:1–4.

Simic P., Vukicevic S., Bone morphogenetic proteins in development and homeostasis of kidney. Cytokine Growth Factor Rev. 2005;16:299–308. doi: 10.1016/j.cytogfr.2005.02.010.

Simon M., Maresh J.G., Harris SE., Hernandez J.D., Arar M., Olson MS., Abboud H.E., Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am J Physiol. 1999;276:F382–F389.

Soleimani M., Na+:HCO3- cotransporters (NBC): expression and regulation in the kidney. J Nephrol. 2002;15(Suppl 5):S32– S40.

Tattersall J. In: Hemodiafiltration. Ronco C., Canaud B., Aljama P., editor. Vol. 158. Basel: Karger; 2007. Clearance of beta-2-microglobulin and middle molecules in haemodiafiltration; pp. 201– 209.

Thomas G., Jaber BL., Convective therapies for removal of middle molecular weight uremic toxins in end-stage renal disease: a review of the evidence. Semin Dial. 2009;22:610–614. doi: 10.1111/j.1525-139X.2009.00665.x.

Uldall R., Ouwendyk M., Francoeur R., Wallace L., Sit W., Vas S., Pierratos A., Slow nocturnal home hemodialysis at the Wellesley Hospital. Adv Ren Replace Ther. 1996;3:133–136.

Uludag H., Ip T.K., Aebischer P., Transport functions in a bioartificial kidney under uremic conditions. Int J Artif Organs. 1990;13:93–97.

Uludag H., Panol G., Aebischer P., Control of water flux in a bioartificial kidney. ASAIO Trans. 1989;35:523–527. doi: 10.1097/00002480-198907000- 00113.

Van Kooten C., Woltman A.M., Daha M.R., Immunological function of tubular epithelial cells: the functional implications of CD40 expression. Exp Nephrol. 2000;8:203–207. doi: 10.1159/000020669.

Wahl P., Schoop R., Bilic G., Neuweiler J., Le Hir M., Yoshinaga S.K., Wuthrich R.P., Renal tubular epithelial expression of the costimulatory molecule B7RP-1 (inducible costimulator ligand) J Am Soc Nephrol. 2002;13:1517–1526. doi: 10.1097/01.ASN.0000017901.77985F

Wilson C.O., Block J.H., Gisvold O., Beale J.M., Wilson and Gisvold's Textbook of organic medicinal and pharmaceutical chemistry. 11. Philadelphia: Lippincott Williams and Wilkins; 2004.

Wright S.H., Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics., Toxicol Appl Pharmacol. 2005;204:309– 319. doi: 10.1016/j.taap.2004.10.021.

Zeaman, Leos J., Zydney, Andrew L., Microfiltration and Ultrafitration, Principles and Applications., New York: Marcel Dekker, Inc,1996. Available: brane