PENGARUH PEMUAIAN PANAS TERHADAP KELURUSAN POROS TURBIN UAP

Dwijaya Febriansyah, Barman Tambunan, Rudias Harmadi, Budi Noviyantoro Fadjrin

Abstract


Sebagian besar penyebab kegagalan pada mesin-mesin rotasi termasuk turbin uap adalah poros yang berputar dalam kondisi misalignment. Pada turbin uap, panas yang merambat pada casing dapat merubah dimensi turbin uap karena adanya pemuaian (thermal growth) sehingga mempengaruhi kelurusan poros saat berputar. Nilai thermal growth ini perlu diketahui sebagai salah satu spesifikasi dalam penyetelan poros sebelum turbin beroperasi. Dalam studi ini,  thermal growth pada turbin uap 3 MW diinvestigasi dengan mengukur kelurusan poros dalam kondisi panas setelah berhenti berputar dan dingin menggunakan metode laser alignment. Hasil pengukuran menunjukkan bahwa thermal growth memberikan pengaruh terhadap kelurusan poros karena adanya selisih nilai kelurusan poros saat kondisi panas dan dingin yaitu 1.0 thous (gap) dan 2.8 thous (offset) pada bidang vertikal kemudian -1.0 thous (gap) dan -2.7 thous (offset) pada bidang horisontal.

Kata kunci : Turbin uap, Thermal growth, Kelurusan poros

Most of the causes of rotating machines failure including steam turbine is shaft misalignment. In the steam turbine, heat that travels to the casing can change steam turbine dimension due to thermal growth which affects the shaft alignment. Thermal growth values needs to be known as one of the specifications in shaft alignment setup. In this study, thermal growth on 3 MW steam turbine was investigated by measuring the shaft alignment in hot after shut down and cold condition using laser alignment method. Results show that thermal growth has an influence on shaft alignment due to difference of alignment values when hot and cold conditions, namely 1.0 thous (gap) and 2.8 thous (offset.) in vertical plane then -1.0 thous (gap) and -2.7 thous (offset.) in horizontal plane.

Key Words : Steam Turbine, Thermal growth, Shaft alignment

 

Full Text:

PDF

References


B. Xu, D. Chen, H. Zhang, C. Li, and J. Zhou, “Shaft mis-alignment induced vibration of a hydraulic turbine generating system considering parametric uncertainties,” J. Sound Vib., vol. 435, pp. 74–90, 2018, https://doi.org/10.1016/j.jsv.2018.08.008.

A. Bahadori and H. B. Vuthaluru, “Estimation of performance of steam turbines using a simple predictive tool,” Appl. Therm. Eng., vol. 30, no. 13, pp. 1832–1838, 2010, http://dx.doi.org/10.1016/j.applthermaleng.2010.04.017.

V. Mrzljak, I. Poljak, and V. Medica-Viola, “Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier,” Appl. Therm. Eng., vol. 119, pp. 331–346, 2017, http://dx.doi.org/10.1016/j.applthermaleng.2017.03.078.

R. Stifanese, L. Belsanti, M. Toselli, P. Letardi, and P. Traverso, “Corrosion investigation of a steam turbine after power generator failure onboard a vessel: A case study,” Eng. Fail. Anal., vol. 64, pp. 58–66, 2016, http://dx.doi.org/10.1016/j.engfailanal.2016.03.007.

R. K. Mobley, Maintenance fundamentals. Elsevier, 2011,.

O. Mankowski and Q. Wang, “Real-time monitoring of wind turbine generator shaft alignment using laser measurement,” Procedia CIRP, vol. 11, pp. 291–295, 2013, http://dx.doi.org/10.1016/j.procir.2013.07.019.

O. Mankowski and Q. Wang, “Real-time Monitoring of Wind Turbine Blade Alignment Using Laser Measurement,” Procedia CIRP, vol. 56, pp. 128–132, 2016, http://dx.doi.org/10.1016/j.procir.2016.10.041.

M. A. Khan et al., “Gear misalignment diagnosis using statistical features of vibration and airborne sound spectrums,” Meas. J. Int. Meas. Confed., vol. 145, pp. 419–435, 2019, https://doi.org/10.1016/j.measurement.2019.05.088.

L. Qu, J. Lin, Y. Liao, and M. Zhao, “Changes in rotor response characteristics based diagnostic method and its application to identification of misalignment,” Meas. J. Int. Meas. Confed., vol. 138, pp. 91–105, 2019, https://doi.org/10.1016/j.measurement.2019.01.075.

D. D. Darmawan, A. Widodo, and I. Haryanto, “Misalignment Kopling Dengan Analisis Sinyal Getaran Kondisi Steady State Menggunakan Metode Reverse,” J. Tek. Mesin S-1, vol. 4, no. 2, pp. 197–206, 2016, http://ejournal-s1.undip.ac.id/index.php/jtm.

I. A. Raharjo, A. Widodo, and I. Haryanto, “Analisis Misalignment Kopling Pada Mesin Rotary Menggunakan SINYAL GETARAN STEADY STATE DENGAN METODE RIM AND FACE,” J. Tek. Mesin S-1, vol. 4, no. 2, pp. 214–223, 2016, http://ejournal-s1.undip.ac.id/index.php/jtm.

O. Tonks and Q. Wang, “The detection of wind turbine shaft misalignment using temperature monitoring,” CIRP J. Manuf. Sci. Technol., vol. 17, pp. 71–79, 2017, http://dx.doi.org/10.1016/j.cirpj.2016.05.001.

A. Prizevaitis, D. Litvinov, and E. Gerins, “Thermal Growth Influence on The Shaft Alignment and Vibration of Centrifugal Pump,” in 16th International Research/Expert Conference : " "Trends in the Development of Machinery and Associated Technology, 2012, pp. 319–322.




DOI: https://doi.org/10.29122/mipi.v14i1.3971

DOI (PDF): https://doi.org/10.29122/mipi.v14i1.3971.g3416

Refbacks

  • There are currently no refbacks.


  Majalah Ilmiah Pengkajian Industri di index oleh:

 

            

     


  Copyright of Majalah Ilmiah Pengkajian Industri (e-ISSN:2541-1233, p-ISSN:1410-3680)