ANALISA PENGARUH KOMPONEN KUADRATIK DAMPING PADA DECAY TEST BUOY TSUNAMI 3.1

Main Article Content

Baharuddin Ali
Totok Triputrastyo Murwantono
Sumarsono Sumarsono
Chandra Permana

Abstract

Koefisien damping sangat berperan dalam akurasi prediksi gerak suatu benda apung. Dari pengujian decay akan didapatkan komponen koefisien damping linear a dan kuadratik b. Koefisien damping linear dan kuadratik dapat diperoleh dengan penurunan persamaan gerak sebagai energy dissipated pada motion decay untuk tiap setengah periode roll (T/2). Pada studi ini disajikan hasil analisa pengaruh kuadratik b terhadap prediksi gerak decay model Buoy INA TEWS Generasi 3.1. Hasil decay model test didapatkan nilai roll natural period 1.726 sec, dengan koefisien damping linear a = 0.36022, koefisien damping kuadratik b = -0.023672, sedangkan heave natural period didapatkan 1.707 sec, koefisien damping linear a = 0.40328, koefisien damping kuadratik b = 0.685230. Dengan memasukan komponen kuadratik damping selain komponen linear damping pada prediksi numerik gerak decay roll dan heave model buoy didapatkan hasil yang lebih baik.

Article Details

Section
Naskah Jurnal (Artikel)

References

Ali, B., Indiaryanto, M., Permana, C., & Widodo. (2018). Analisa Perubahan Panjang Model FPU Barge terhadap Koefisien Linier dan Kuadratik Roll Damping. Kapal: Jurnal Ilmu Pengetahuan & Teknologi Kelautan, Vol. 15 (3), 83-87.

Begovic, E., Bertorello, C., & Orsic, J. P. (2013). Roll Damping Coefficients Assessment and Comparison for Round Bilge and Hard Chine Hullforms. 32nd International Conference on Ocean, Offshore and Arctic Engineering (hal. 1-9). Nantes: American Society of Mechanical Engineers.

Bhattacharyya, R. (1978). Dynamics of Marine Vehicles. New Jersey: John Wiley & Sons, Inc.

Froude, W. (1861). The Royal Institution of Naval Architects. Diambil kembali dari On the Rolling of Ship: https://www.rina.org.uk/res/On%20the%20Rolling%20of%20Ships.pdf

Jeong, S. M., Son, B. H., & Lee, C. Y. (2020). Estimation of the Motion Performance of a Light Buoy Adopting Ecofriendly and Lightweight Materials in Waves. Journal of Marine Science and Engineering, Vol. 8 (139), 1-9.

Lee, J., Kim, Y., Choi, J. E., Kim, C. H., & Lee, Y. B. (2018). Towing-Tank Experiment and Analysis of Nonlinear Roll Damping for a Drillship with Different Appendages. Ocean Engineering, Vol. 160 (15), 324-334.

Lewandowski, E. M. (2011). Comparison of Some Analysis Methods for Ship Roll Decay Data. Proceedings of the 12th International Ship Stability Workshop (hal. 325-330). Glasgow: University of Strathclyde.

Malta, E. B., Goncalves, R. T., Matsumoto, F. T., Pereira, F. R., Fujarra, A. L., & Nishimoto, K. (2010). Damping Coefficient Analysis for Floating Offshore Structures. 29th International Conference on Ocean, Offshore and Arctic Engineering (hal. 1-7). Shanghai: American Society of Mechanical Engineers.

Taylan, M. (2000). The Effect of Nonlinear Damping and Restoring in Ship Rolling. Ocean Engineering, Vol. 27 (9), 921-932.

Yustiawan, A., & Suastika, K. (2012). Prediksi Umur Kelelahan Struktur Keel Buoy Tsunami dengan Metode Spectral Fatigue Analysis. Jurnal Teknik ITS, Vol. 1, G59-G64.

Zhao, W., Efthymiou, M., McPhail, F., & Wille, S. (2016). Nonlinear Roll Damping of a Barge with and Without Liquid Cargo in Spherical Tanks. Journal of Ocean Engineering and Science, Vol. 1 (1), 84-91.