PENGEMBANGAN TEKNIK KULTIVASI Spirulina sp. SEBAGAI SUMBER BIOMASSA ENERGI TERBARUKAN DALAM FOTOBIOREAKTOR AIRLIFT

Main Article Content

Fifin Hindarti
Endah Ayuningtyas

Abstract

The development of technology for the use of natural resources as fuel is increasing. One of them is the
research of third generation biodisel. This technology utilizes microalgae as an environmentally
friendly raw material which is also a renewable energy source for oil. Biodiesel from microalgae
especially Spirulina sp. is one of the energy sources that can replace conventional diesel fuel which
has potential for high lipid content. This study aims to develop a microalgae cultivation technology in an
airlift photobioreactor by adjusting the light intensity of the LED lamp to obtain an optimal growth rate
and increase the biomass production of Spirulina sp. The research was conducted on an intermediate
scale using an airlift type photobioreactor with varying light intensity, namely 1600 lux, 2200 lux, and
3200 lux. Each treatment was carried out three times for 14 days. Measurement of biomass weight was
calculated using the gravimetric method, by taking samples every 7 days. Based on the data obtained,
the application of different light intensities to the spirulina sp. cultivation system will have an effect on
the final result in harvesting day 14th, specifically the weight of the biomass produced. The average
yield of biomass on day 14th with the best results was obtained at light intensity of 1600 as much as 623
mg / 100 ml.

Article Details

How to Cite
Hindarti , F. ., & Ayuningtyas, E. . (2020). PENGEMBANGAN TEKNIK KULTIVASI Spirulina sp. SEBAGAI SUMBER BIOMASSA ENERGI TERBARUKAN DALAM FOTOBIOREAKTOR AIRLIFT. Jurnal Energi Dan Lingkungan (Enerlink), 16(1), 17–24. https://doi.org/10.29122/jel.v16i1.4578
Section
ARTICLE

References

Batan, L., Quinn, J., Willson, B., Bradley, T., (2010). Net Energy

and Greenhouse Gas Emission Evaluation of Biodisel

Derived from Microalgae. Environ. Sci. Technol, 44.

BPPT, (2018). “Outlook Energi Indonesia 2018, Energi

Berkelanjutan untuk Transportasi Darat”

Budiman, A. dkk, (2019). Mikroalga : Kultivasi Pemanenan,

Ekstraksi dan Konversi Energi, Gadjah Mada University

Press.

Budiman, A., dkk, (2014). Biodisel : Bahan Baku, Proses dan

Teknologi, Gadjah Mada University Press.

Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J, dan Chang, J.S.,

(2011), “Cultivation, photobioreactor design and harvesting of

microalgae for biodisel production: A critical review”,

Bioresource Technology.

Chisti Y., (2007). Biodisel from Microalgae. BiotechnolAdv., 25.

Daniyati, Rizqa, Gatut Yudoyono dan Agus Rubiyanto, (2012).

Desain Closed Photobioreaktor Chorella vulgaris sebagai

Mitigasi Emisi CO2. Jurnal Sains dan Seni ITS. Vol. 1, ISSN:

-928X.

Gultom, SO, (2018). Mikrolaga : Sumber Energi Terbarukan

Masa Depan. Jurnal Kelautan Volume 11, No.1,2018 I S S N : 1 9 0 7 - 9 9 3 1 ( p r i n t ) , 2 4 7 6 - 9 9 9 1 ( o n l i n e ) .

http://journal.trunojoyo.ac.id/jurnalkelautan.

Hadiyanto, (2014). Biofiksasi CO2 Oleh Mikroalga

Chlamydomonas sp dalam Photobioreaktor Tubular. Ejurnal

undip. http://ejournal.undip.ac.id/index.php/reaktor/article/

view/8390.

Harun, R., Singh, M., Forde, G.M., dan Danquah, M.K., (2010),

Bioprocess engineering of microalgae to produce a variety of

consumer products”, Renewable and Sustainable Energy

Reviews.

ITB, (2019) Pengolahan Biomassa Mikroalga Sebagai Langkah

Awal Indonesia Mandiri Energi. https://www.itb.ac.id/news/

xhtml

Jorquera, O., Kiperstok, A., Sales, E.A., Embirucu, M., Ghirardi,

M.L., (2010). Comparative Energy Life-Cycle Analyses of

Microalgal Biomasa Production in Open Ponds and

Photobioreactors. Bioresour Technol, 101.

Kawaroe M., Prartono T., Sunuddin A., Wulan Sari D., dan

Augustine D., (2010). Mikroalga Potensi dan

Pemanfaatannya untuk Produksi Bio Bahan Bakar. Bogor:

IPB Press.

Lardon, L., Helias, A., Sialve, B., Steyer, J.P., Bernard, O.,

(2009). Life Cycle Assessment of Biodisel Production from

Microalgae. Environmental science and technology, 43.

LIPI,(2019).http://lipi.go.id/berita/single/PengembanganMikroalga-Masih -Lamban/10550.

Mahfud, (2018). Biodisel Perkembangan Bahan Baku dan

Teknologi, CV. Putra Media (PM). Nusantara NGriya Kebraon

Tengah XVII Blok FI/10, Surabaya.

Ojamae K., (2011). Growth physiology and photosynthetic

performance of green microalgae mass culture grown in a

thin-layer cascade. [Tesis]. University of Tartu Faculty of

Science and Technology Institute of Ecology and Earth

Sciences Department of Botany.

Pramono, IA, dkk, (2018). Optimasi Ekstraksi Lipid dari

Spirulina platensis Menggunakan Tekanan Osmotik dengan

Bantuan Gelombang Ultrasonik dan Produksi Metil Esternya

Secara Enzimatis, Jurnal Berkala MIPA.

Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., LeaSmith, D J., and Smith, A.G. (2010). Biodisel from Algae:

Challenges and Prospects. Current Opinion in Biotecnology,

Spolaore, P., Joannis-Cassan, C., Duran, E., dan Isambert, A.,

(2006), “Commercial Applications of Microalgae”, Journal of

Bioscience and Bioengineering

Sulaksono, B., (2005). Perencanaan Alat Filter Press Minyak

Jarak, Jurnal Mekanika Teknik Mesin FTUP Vol. 1, No. 1,

Januari 2005

Verma, N.H., Mehrotra, S., Amitesh Shukla, A., and Mishra,

B.N., (2010). Prospective of biodisel production utilizing

microalgae as the cell factories: A compre-hensive

discussion.African Journal of Biotechnol-ogy.