OPTIMASI KONDISI EKTRAKSI VANILLIN HASIL DEGRADASI LIGNOSELULOSA BAGAS TEBU MENGGUNAKAN RESPONSE SURFACE METHOD (RSM)

Main Article Content

Irnia Nurika
Faudina Nurin Nisa'
Nurul Azizah
Sri Suhartini

Abstract

Optimization of Vanillin Extraction Conditions from Lignocellulose Degradation of Sugarcane Bagasse using the Response Surface Method (RSM)


Sugarcane bagasse is an agricultural waste containing lignocellulose and has the potential to be processed into high-value chemicals such as vanillin. The degradation of sugarcane bagasse lignocellulose can be carried out biologically by the white rot fungus Phanerochaete chrysosporium. This study aims to obtain optimal extraction conditions in the form of ethyl acetate solvent volume and extraction time, using the response surface method (RSM). Two optimized factors were the volume of ethyl acetate (71.72; 80; 100; 120; and 128.28 mL) and the extraction time (35.16; 60; 120; 180; 204.84 minutes). The response variables were the concentration (%) and yield of vanillin (µg g–1). The research on the optimization of the response of vanillin levels and vanillin yield was carried out at 14 days incubation with the highest average total soluble phenol (TSP) value of 0.101 mg g–1. The optimal condition of ethyl acetate volume of 109.730 mL with an extraction time of 137.302 minutes was predicted to produce vanillin levels and yields of 0.0078% and 8.9089 g g–1, respectively, with an accuracy value of 93.4%. Based on the verification results, the optimal vanillin concentration and yield were 0.0077% and 8.9805 g g–1, respectively.


Bagas tebu merupakan limbah pertanian yang mengandung lignoselulosa dan berpotensi diolah menjadi bahan kimia bernilai tinggi seperti vanillin. Degradasi lignoselulosa bagas tebu dapat dilakukan secara biologis oleh jamur pelapuk putih Phanerochaete chrysosporium. Penelitian ini bertujuan mendapatkan kondisi ekstraksi optimal berupa volume pelarut etil asetat dan lama waktu ekstraksi, menggunakan response surface method (RSM). Dua faktor yang dioptimasi adalah volume etil asetat (71,72; 80; 100; 120; dan 128,28 mL) dan lama waktu ekstraksi (35,16; 60; 120; 180; 204,84 menit). Variabel respons adalah kadar (%) dan yield vanillin (µg g–1). Penelitian optimasi respons kadar vanillin dan yield vanillin dilakukan pada inkubasi 14 hari dengan nilai total soluble phenol (TSP) rata-rata tertinggi 0,101 mg g–1. Kondisi optimal volume etil asetat 109,730 mL dengan waktu ekstraksi 137,302 menit diprediksi menghasilkan kadar dan yield vanillin sebesar 0,0078% dan 8,9089 µg g–1 dengan nilai ketepatan 93,4%. Berdasar hasil verifikasi, konsentrasi dan yield vanillin yang optimal masing-masing adalah 0,0077% dan 8,9805 µg g–1.

Article Details

How to Cite
Nurika, I., Nisa’, F. N., Azizah, N., & Suhartini, S. (2021). OPTIMASI KONDISI EKTRAKSI VANILLIN HASIL DEGRADASI LIGNOSELULOSA BAGAS TEBU MENGGUNAKAN RESPONSE SURFACE METHOD (RSM). Jurnal Bioteknologi &Amp; Biosains Indonesia (JBBI), 8(1), 89–104. https://doi.org/10.29122/jbbi.v8i1.4500
Section
Research Articles

References

Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7: 72. doi: 10.1186/s13568-017-0375-4

Andlar M, Rezi? T, Mar?etko N, Kracher D, Ludwig R, Šantek B (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18: 768–778. doi: 10.1002/elsc.201800039

Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94: 323–338. doi: 10.1007/s00253-012-3954-y

Arif S, Batool A, Nazir W, Khan RS, Khalid N (2019) Physiochemical characteristics nutritional properties and health benefits of sugarcane juice. Non-Alcoholic Beverages 6: 227–257. doi: 10.1016/B978-0-12-815270-6.00008-6

Barbosa EDS, Perrone D, Vendramini AA, Leite SGF (2008) Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation. BioResources 3: 1042–1050. doi: 10.15376/biores.3.4.1042-1050

Chandel AK, da Silva SS, Carvalho W, Singh OV (2011) Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87: 11–20. doi: 10.1002/jctb.2742

Chandra P, Arora DS, Pal M, Sharma RK (2019) Antioxidant potential and extracellular auxin production by white rot fungi. Appl Biochem Biotechnol 187: 531–539. doi: 10.1007/s12010-018-2842-z

Cheavegatti-Gianotto A, de Abreu HMC, Arruda P, Bespalhok Filho JC, Burnquist WL, Creste S, di Ciero L, Ferro JA, de Oliveira Figueira AV, de Sousa Filgueiras T, Grossi-de-Sá MDF, Guzzo EC, Hoffmann HP, de Andrade Landell MG, Macedo N, Matsuoka S, de Castro Reinach F, Romano E, da Silva WJ, de Castro Silva Filho M, César Ulian E (2011) Sugarcane (Saccharum × officinarum): A reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol 4: 62–89. doi: 10.1007/s12042-011-9068-3

Datta R (1981) Acidogenic fermentation of lignocellulose–acid yield and conversion of components. Biotechnol Bioeng 23: 2167–2170. doi: 10.1002/bit.260230921

Dong Z, Gu F, Xu F, Wang Q (2014) Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews. Food Chem 149: 54–61. doi: 10.1016/j.foodchem.2013.10.052

Eisenhuber K, Krennhuber K, Steinmüller V, Jäger A (2013) Comparison of different pre-treatment methods for separating hemicellulose from straw during lignocellulose bioethanol production. Energy Procedia 40: 172–181. doi: 10.1016/j.egypro.2013.08.021

Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2016) Lignin peroxidase functionalities and prospective applications. Microbiol Open 6: e00394. doi: 10.1002/mbo3.394

Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75: 583–609. doi: 10.1128/mmbr.00020-11

Gajendiran A, Krishnamoorthy S, Abraham J (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6: 52. doi: 10.1007/s13205-016-0394-x

Gallage NJ, Møller BL (2015) Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant 8: 40–57. doi: 10.1016/j.molp.2014.11.008

Gu F, Xu F, Tan L, Wu H, Chu Z, Wang Q (2012) Optimization of enzymatic process for vanillin extraction using response surface methodology. Molecules 17: 8753–8761. doi: 10.3390/molecules17088753

Hartati I, Ardi PRR, Milzam M, Paramita V (2019) Economic factor on the in situ vanillin enzymatic formation from the green pods vanilla. J Vocat Stud Appl Res 1: 26–29. doi: 10.14710/jvsar.1.1.2019.26-29

Haruta S, Kanno N (2015) Survivability of microbes in natural environments and their ecological impacts. Microbes Environ 30: 123–125. doi: 10.1264/jsme2.ME3002rh

Hermanto BM, Noor E, Arkeman Y, Riani E (2019) Analisis kelayakan produksi silikon dari abu ampas tebu. J Nat Resour Environ Manag 9: 818–825. doi: 10.29244/jpsl.9.3.818-825

Ibrahim AG, EL-Gamdi LSYA (2019) Characterization of fungi that able to degrade phenol from different contaminated areas in Saudi Arabia. J Biol Sci 19: 210–217. doi: 10.3923/jbs.2019.210.217

Isola C, Sieverding HL, Numan-Al-Mobin AM, Rajappagowda R, Boakye EA, Raynie DE, Smirnova AL, Stone JJ (2018) Vanillin derived from lignin liquefaction: A sustainability evaluation. Int J Life Cycle Assess 23: 1761–1772. doi: 10.1007/s11367-017-1401-0

Ivanova V, Vojnoski B, Stefova M (2012) Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. J Food Sci Technol 49: 161–172. doi: 10.1007/s13197-011-0279-2

Janusz G, Pawlik A, Sulej J, ?widerska-Burek U, Jarosz-Wilkolazka A, Paszczy?ski A (2017) Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41: 941–962. doi: 10.1093/femsre/fux049

Jibril S, Basar N, Sirat HM, Abdul Wahab R, Mahat NA, Nahar L, Sarker SD (2019) Application of Box–Behnken design for ultrasound-assisted extraction and recycling preparative HPLC for isolation of anthraquinones from Cassia singueana. Phytochem Anal 30: 101–109. doi: 10.1002/pca.2795

Kadarohman A, Siti HH, Fareza MS (2010) Konversi dan karakterisasi isoeugenol asetat menjadi vanillin asetat. J Sains Teknol Kim 1: 177–181

Khoshnamvand N, Kord Mostafapour F, Mohammadi A, Faraji M (2018) Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express 8: 48. doi: 10.1186/s13568-018-0579-2

Kumar KK, Kumar AAA, Ahmad R, Adhikari S, Variyar PS, Sharma A (2010) Effect of gamma-radiation on major aroma compounds and vanillin glucoside of cured vanilla beans (Vanilla planifolia). Food Chem 122: 841–845. doi: 10.1016/j.foodchem.2010.03.006

Lalak J, Kasprzycka A, Martyniak D, Tys J (2016) Effect of biological pretreatment of Agropyron elongatum “BAMAR” on biogas production by anaerobic digestion. Bioresour Technol 200: 194–200. doi: 10.1016/j.biortech.2015.10.022

Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, Hu Y, Wang S, Hu S (2016) A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 6: 25313. doi: 10.1038/srep25313

Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Herpoel-Gimbert I, Levasseur A, Raouche S, Sigoillot JC (2014) Exploring fungal biodiversity: Organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol 1: 1. doi: 10.1186/s40694-014-0001-z

Listarina (2012) Sintesis vanilil butil eter dari vanillin cap X. Skirpsi, Universitas Indonesia

Lun OK, Wai TB, Ling LS (2014) Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. Int Food Res J 21: 953–958. Corpus ID: 41350146

Madadi M, Abbas A (2017) Lignin degradation by fungal pretreatment: A review. J Plant Pathol Microbiol 8: 398. doi: 10.4172/2157-7471.1000398

Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol 70: 485–498. doi: 10.1007/s00284-014-0743-0

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428. doi: 10.1021/ac60147a030

Mota MIF, Pinto PCR, Loureiro JM, Rodrigues AE (2016) Recovery of vanillin and syringaldehyde from lignin oxidation: A review of separation and purification processes. Sep Purif Rev 45: 227–259. doi: 10.1080/15422119.2015.1070178

Mustabi J, Wedawati, Armayanti AK (2018) Improving quality and digestibility of cocoa pod with white rot fungi. IOP Conf Ser: Earth Environ Sci 157: 012002. doi: 10.1088/1755-1315/157/1/012002

Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response Surface Methodology: Process and product optimization using designed experiments, 4th Ed. Wiley & Sons Inc, New Jersey, USA

Nofu K, Khotimah S, Lovadi I (2014) Isolasi dan karakteristik bakteri pendegradasi selulosa pada ampas tebu kuning (bagasse). J Probiont 3: 25–33

Nottingham AT, Hicks LC, Ccahuana AJQ, Salinas N, Bååth E, Meir P (2018) Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol Fertil Soils 54: 219–228. doi: 10.1007/s00374-017-1247-4

Becerra P, Acevedo P, Gonzalez L, Ortiz N, Cabeza I (2018) Sustainability evaluation of sugarcane bagasse valorization alternatives in Valle del Cauca - Colombia. Chem Eng Trans 65: 817–822. doi: 10.3303/CET1865137

Paramita V, Yulianto ME (2019) Response surface analysis on the microwave integrated-rumen based extraction of natural vanillin from cured vanilla pods. J Phys Conf Ser 1295: 012016. doi: 10.1088/1742-6596/1295/1/012016

Pitt JI, Hocking AD (2009) Fungi and Food Spoilage. Springer, New York, USA. doi: 10.1007/978-0-387-92207-2

Rasoamandrary N, Fernandes AM, Bashari M, Masamba K, Xueming X (2013) Improved extraction of vanillin 4-hydroxy-3-methoxybenzaldehyde from cured vanilla beans using ultrasound-assisted extraction: A comparison of ultrasound-assisted and hot water bath extraction. Akademik G?da 11: 6–12

Sciubba L, Di Gioia D, Fava F, Gostoli C (2009) Membrane-based solvent extraction of vanillin in hollow fiber contactors. Desalination 241: 357–364. doi: 10.1016/j.desal.2007.10.104

Shu M, Man Y, Ma H, Luan F, Liu H, Gao Y (2016) Determination of vanillin in milk powder by capillary electrophoresis combined with dispersive liquid-liquid microextraction. Food Anal Methods 9: 1706–1712. doi: 10.1007/s12161-015-0347-8

Sigoillot JC, Berrin JG, Bey M, Lesage-Meessen L, Levasseur A, Lomascolo A, Record E, Uzan-Boukhris E (2012) Fungal strategies for lignin degradation. In: Jouanin L, Lapierre C (Ed.), Advances in Botanical Research. Elsevier Ltd, Amsterdam, hal. 263–308. doi: 10.1016/B978-0-12-416023-1.00008-2

Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144–158

Solomon S (2011) Sugarcane by-products based industries in India. Sugar Tech 13: 408–416. doi: 10.1007/s12355-011-0114-0

Su Y, Yu X, Sun Y, Wang G, Chen H, Chen G (2018) Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover. Sci Rep 8: 5385. doi: 10.1038/s41598-018-23626-6

Sugiono (2015) Isolasi dan karaterisasi fukoidan dari alga coklat Sargassum sp. Agrosains 2: 96–107

Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199: 49–58. doi: 10.1016/j.biortech.2015.08.061

Supriya C, Neehar D (2014) Biodegradation of phenol by Aspergillus niger. IOSR J Pharm 4: 11–17

Yakin EA, Bachruddin Z, Utomo R, Millati R (2017) Effect of lignoselulolitic fungus to enzimatic activity, fiber fraction, and digestibility on fermentation process of cocoa pod. Bul Peternak 41: 250–256. doi: 10.21059/buletinpeternak.v41i3.22657

Yusuf M, Sarjiyah S, Mulyono M (2018) Effects of appropriate composition of sugarcane bagasse compost and nitrogen fertilizer on the growth and yield of soybean (Glycine max L. Merill). Adv Eng Res 172: 126–132. doi: 10.2991/fanres-18.2018.25

Zanchetta A, dos Santos ACF, Ximenes E, da Costa Carreira Nunes C, Boscolo M, Gomes E, Ladisch MR (2018) Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. Bioresour Technol 252: 143–149. doi: 10.1016/j.biortech.2017.12.061

Zhang H, Huang S, Wei W, Zhang J, Xie J (2019) Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. Biotechnol Biofuels 12: 107. doi: 10.1186/s13068-019-1454-3

Zhang S, Jiang M, Zhou Z, Zhao M, Li Y (2012) Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. Int Biodeter Biodegr 75: 89–95. doi: 10.1016/j.ibiod.2012.09.003

Zhang Y, Mo L, Chen F, Lu M, Dong W, Wang Q, Xu F, Gu F (2014) Optimized production of vanillin from green vanilla pods by enzyme-assisted extraction combined with pre-freezing and thawing. Molecules 19: 2181–2198. doi: 10.3390/molecules19022181

Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42: 35–53. doi: 10.1016/j.pecs.2014.01.001

Zhu H, Zhang Y, Tian J, Chu Z (2018) Effect of a new shell material-Jackfruit seed starch on novel flavor microcapsules containing vanilla oil. Ind Crops Prod 112: 47–52. doi: 10.1016/j.indcrop.2017.10.060