KAJIAN MOLEKULER PADA PROBIOTIK ASAL AIR SUSU IBU DALAM SINTESIS EKSOPOLISAKARIDA (EPS)

Main Article Content

Hamiyawati Qoimatu Dini Alfaruqi
Nosa Septiana Anindita
Arif Bimantara

Abstract

Molecular Studies on Probiotic of Human Breast Milk in the Synthesis of Exopolysaccharide (EPS) 


The glucosyltransferase (gtf) gene has an important role in exopolysaccharide (EPS) synthesis in probiotic bacteria. The EPS produced is associated with the adhesion ability of bacteria to the intestinal mucosa. Therefore, the gtf gene can be used as a parameter in the selection of potential probiotic through a molecular approach. This study was conducted to determine the presence of the gtf gene in probiotic from human breast milk using PCR technique. The methods in this study include the following: reculture of probiotic isolates, DNA isolation, amplification of the 16S rRNA gene using universal primers (pA and pB), amplification of specific LAB primers (LABfw and LABrv), specific primary design for the gtf gene, and the amplification of the gtf gene. The results of 16S rRNA gene amplification using universal primers obtained the amplicons of 500-1,000 bp in size. The results of amplification using specific LAB primers obtained an amplicon of about 700 bp in all isolates. The results of amplification of the gtf gene using a specific primer produced an amplicon of 325 bp in all isolates. Based on this study, it was concluded that 16 probiotic isolates from human breast milk were proven to have the gtf gene.


Gen glukosiltransferase (gtf) memiliki peran penting dalam sintesis eksopolisakarida (EPS) pada bakteri probiotik. EPS yang diproduksi berhubungan dengan kemampuan adhesi bakteri pada mukosa usus. Oleh karena itu, gen gtf dapat dijadikan sebagai salah satu parameter dalam seleksi probiotik potensial melalui pendekatan molekuler. Penelitian ini dilakukan untuk mengetahui adanya gen gtf pada probiotik asal air susu ibu (ASI) menggunakan teknik PCR. Metode pada penelitian ini meliputi: reculture isolat probiotik, isolasi DNA, amplifikasi gen 16S rRNA menggunakan primer universal (pA dan pB), amplifikasi primer spesifik BAL (LABfw dan LABrv), desain primer spesifik untuk gen gtf dan amplifikasi gen gtf. Hasil amplifikasi gen 16S rRNA menggunakan primer universal diperoleh amplikon berukuran antara 500-1.000 bp. Adapun hasil amplifikasi menggunakan primer spesifik BAL diperoleh amplikon berukuran sekitar 700 bp pada seluruh isolat. Hasil amplifikasi gen gtf menggunakan primer spesifik menghasilkan amplikon berukuran sekitar 325 bp pada seluruh isolat. Berdasarkan penelitian ini dapat disimpulkan bahwa 16 isolat probiotik asal ASI terbukti memiliki gen gtf.

Article Details

How to Cite
Alfaruqi, H. Q. D., Anindita, N. S., & Bimantara, A. (2021). KAJIAN MOLEKULER PADA PROBIOTIK ASAL AIR SUSU IBU DALAM SINTESIS EKSOPOLISAKARIDA (EPS). Jurnal Bioteknologi &Amp; Biosains Indonesia (JBBI), 8(1), 114–123. https://doi.org/10.29122/jbbi.v8i1.4554
Section
Research Articles

References

Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162: 853–865. doi: 10.1016/j.ijbiomac.2020.06.190

Anindita NS (2020) Identifikasi glukosiltransferase (gtf) penyandi eksopolisakarida pada strain Weisella confusa probiotik asal air susu ibu (ASI). J Pangan Agroindustri 8: 75–85. doi: 10.21776/ub.jpa.2020.008.02.3

Anindita NS, Novalina D, Sholikhah AN (2018) Isolasi dan identifikasi bakteri asam laktat asal air susu ibu sebagai kandidat probiotik dalam pangan kesehatan. Lap Penelitian Dosen Pemula (PDP), Yogyakarta

Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29: 54–66. doi: 10.1016/j.biotechadv.2010.08.011

Bagci U, Togay SO, Temiz A, Ay M (2019) Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol (Praha) 64: 735–750. doi: 10.1007/s12223-019-00687-2

Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P (2018) Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front Microbiol 9: 2426. doi: 10.3389/fmicb.2018.02426

Favorgen (2018) FavorPrep tissue genomic DNA extraction mini kit - User manual protocol: Isolation of DNA from animal/bacterial tissue. Favor Biotech Corp

Fukao M, Zendo T, Inoue T, Nakayama J, Suzuki S, Fukaya T, Yajima N, Sonomoto K (2019) Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, Lactobacillus brevis KB290. J Biosci Bioeng 128: 391–397. doi: 10.1016/j.jbiosc.2019.04.008

Galle S, Schwab C, Arendt EK, Gänzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 28: 547–553. doi: 10.1016/j.fm.2010.11.006

Gharbi Y, Fhoula I, Ruas-madiedo P, Afef N, Boudabous A, Gueimonde M, Ouzari HI (2018) In-vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: interaction with pathogenic bacteria and the enteric cell line HT29. Ann Microbiol 69: 61–72. doi: 10.1007/s13213-018-1396-1

Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC (2016) The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 21: 400–405. doi: 10.1016/j.siny.2016.05.003

Heilig HGHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68: 114–123. doi: 10.1128/AEM.68.1.114

Heng NCK, Yeh CW, Malik A (2017) Draft genome sequence of Weissella confusa MBF8-1, a glucansucrase and bacteriocin-producing strain isolated from a homemade soy product. Genome Announc 5: e01497. doi: 10.1128/genomeA.01497-16

Judelson H (2012) Guidelines for designing primers. Primer Guidelines 10: 1–5

Kim Y, Oh S, Yun HS, Oh S, Kim SH (2010) Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 51: 123–130. doi: 10.1111/j.1472-765X.2010.02859.x

Le Doare K, Holder B, Bassett A, Pannaraj PS (2018) Mother’s milk: A purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 9: 361. doi: 10.3389/fimmu.2018.00361

Liu Z, Zhang Z, Qiu L, Zhang F, Xu X, Wei H, Tao X (2017) Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J Dairy Sci 100: 6895–6905. doi: 10.3168/jds.2016-11944

Malik A, Hermawati AK, Hestiningtyas M, Soemiati A, Radji M (2010) Isolasi dan skrining molekuler bakteri asam laktat pembawa gen glukansukrase dari makanan dan minuman mengandung gula. Makara Sains 14: 63–68. doi: 10.7454/mss.v14i1.467

Malik A, Radji M, Kralj S, Dijkhuizen L (2009) Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiol Lett 300: 131–138. doi: 10.1111/j.1574-6968.2009.01772.x

Masalam MS, Bahieldin A, Alharbi MG, Al-Masaudi S, Al-Jaouni SK, Harakeh SM, Al-Hindi RR (2018) Isolation, molecular characterization and probiotic potential of lactic acid bacteria in Saudi raw and fermented milk. Evid Based Complement Alternat Med 2018: 7970463. doi: 10.1155/2018/7970463

Prayitno E, Nuryandani E (2011) Optimization of DNA extraction of physic nut (Jatropha curcas) by selecting the appropriate leaf. Nus Biosci 3: 1–6. doi: 10.13057/nusbiosci/n030101

Rajoka MSR, Jin M, Haobin Z, Li Q, Shao D, Jiang C, Huang Q, Yang H, Shi J, Hussain N (2018) Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. LWT - Food Sci Technol 89: 638–647. doi: 10.1016/j.lwt.2017.11.034

Reis NA, Saraiva MAF, Duarte EAA, de Carvalho EA, Vieira BB, Evangelista-Barreto NS (2016) Probiotic properties of lactic acid bacteria isolated from human milk. J Appl Microbiol 121: 811–820. doi: 10.1111/jam.13173

Stack HM, Kearney N, Stanton C, Fitzgerald GF, Ross RP (2010) Association of beta-glucan endogenous production with increased stress tolerance of intestinal Lactobacilli. Appl Environ Microbiol 76: 500–507. doi: 10.1128/AEM.01524-09

Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee Y, Kim JK, Park WJ, You SG (2014) Exopolysaccharides from lactic acid bacteria?: Structural analysis, molecular weight effect on immunomodulation. Int J Biol Macromol 68: 233–240. doi: 10.1016/j.ijbiomac.2014.05.005

Tabibloghmany FS, Ehsandoost E (2014) An overview of healthy and functionality of exopolysaccharides produced by lactic acid bacteria in the dairy industry. Eur J Nutr Food Saf 4: 63–86. doi: 10.9734/ejnfs/2014/6948

Tamang JP, Shin DH, Jung SJ, Chae SW (2016) Functional properties of microorganisms in fermented foods. Front Microbiol 7: 578. doi: 10.3389/fmicb.2016.00578

Uslan U, Pharmawati M (2015) Optimasi konsentrasi DNA dan MgCl2 pada reaksi Polymerase Chain Reaction-Random Amplified Polymorphic DNA untuk analisis keragaman genetik tanaman Faloak (Sterculia quadrifida R. Br). J Bios Logos 5: 26–34. doi: 10.35799/jbl.5.1.2015.9316