Main Article Content

Devita Tetriana
Tur Rahardjo
Teja Kisnanto
Yanti Lusiyanti
Dyah Erawati
Nastiti Rahajeng


Analyses of DNA Damage in the Patient’s Lymphocyte Cells Post-Radiotherapy

Radiotherapy given in high doses to kill cancer cells can also induce DNA damage in surrounding normal cells. The radiation dose is divided into smaller doses called fractionation to decrease the effect of radiation on normal tissue. For this reason, it is necessary to monitor the peripheral blood lymphocytes to evaluate the patient's DNA damage. The alkaline comet test is a simple and sensitive technique for detecting DNA instability. This study involved 11 patients who underwent radiotherapy up to 20 Gy, and 11 healthy subjects as controls. This study aims to see how much DNA damage is caused by a 20 Gy fractionated radiation dose in patients with various cancers. The results showed that the mean frequency of damaged cells in patients was 80.54 ± 12.52% with a mean comet tail length of 49.98 ± 12.93 µm. There was a significant difference in both the frequency of damaged cells and the mean value of the comet tail length against the control group (p < 0.001). It was concluded that high doses of radiation can cause DNA damage to peripheral blood lymphocytes.

Radioterapi yang diberikan dalam dosis tinggi untuk mematikan sel kanker juga dapat menginduksi kerusakan DNA pada sel normal di sekitarnya. Dosis radiasi dibagi menjadi dosis yang lebih kecil yang disebut fraksinasi untuk menurunkan efek radiasi pada jaringan normal. Untuk itu perlu pemantauan pada limfosit darah tepi untuk mengevaluasi kerusakan DNA pasien. Uji komet alkali merupakan teknik yang sederhana dan sensitif untuk mendeteksi ketidakstabilan DNA. Penelitian ini melibatkan 11 pasien yang menjalani radioterapi hingga 20 Gy, dan 11 subyek sehat sebagai kontrol. Penelitian ini bertujuan untuk melihat seberapa besar kerusakan DNA akibat dosis radiasi fraksinasi 20 Gy pada pasien dengan variasi kanker. Hasil penelitian menunjukkan bahwa rerata frekuensi sel yang rusak pada pasien 80,54 ± 12,52% dengan rerata panjang ekor komet 49,98 ± 12,93 µm terdapat perbedaan nyata baik pada frekuensi sel yang rusak maupun nilai rerata panjang ekor komet terhadap kelompok kontrol (p < 0,001). Penelitian ini menyimpulkan bahwa radiasi dosis tinggi dapat menyebabkan kerusakan DNA sel limfosit darah tepi.

Article Details

How to Cite
Yusuf, D., Devita Tetriana, Tur Rahardjo, Teja Kisnanto, Yanti Lusiyanti, Erawati, D., & Rahajeng, N. (2021). ANALISIS KERUSAKAN DNA PADA SEL LIMFOSIT PASIEN PASCA-RADIOTERAPI. Jurnal Bioteknologi &Amp; Biosains Indonesia (JBBI), 8(1), 105–113.
Research Articles


Adamczyk A, Biesaga B, Klimek M, Mucha-Malecka (2018) Comet assay is not useful to predict normal tissue response after radiochemotherapy in cervical and larynx cancer patients. Pol J Pathol 69: 410–421. doi: 10.5114/pjp.2018.81230

Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW (2014) Biological response of cancer cells to radiation treatment. Front Mol Biosci 1: 24. doi: 10.3389/fmolb.2014.00024

Borrego-Soto G, Ortiz-López R, Rojas-Martínez A (2015) Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol 38: 420–432. doi: 10.1590/S1415-475738420150019

Bowman KJ, Al-Moneef MM, Sherwood BT, Colquhoun AJ, Goddard JC, Griffiths TRL, Payne D, Singh S, Butterworth PC, Khan MA, Summerton DJ, Steward WP, McKelvey-Martin VJ, McKeown SR, Kockelbergh RC, Mellon JK, Symonds RP, Jones GDD (2014) Comet assay measures of DNA damage are predictive of bladder cancer cell treatment sensitivity in vitro and outcome in vivo. Int J Cancer 134: 1102–1111. doi: 10.1002/ijc.28437

Connell PP, Hellman S (2009) Advances in radiotherapy and implications for the next century: A historical perspective. Cancer Res 69: 383–392. doi: 10.1158/0008-5472.CAN-07-6871

Darlina, Tur R, Teja K, Wiwin M, Yanti L (2018) Efek jenis pekerjaan, usia dan gender terhadap kerusakan DNA sel limfosit pekerja radiasi medis. J Biotek Medisiana Indones 7: 45–55

De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F (2019) Radiotherapy toxicity. Nat Rev Dis Primers 5: 15. doi: 10.1017/CBO9781107415324.004

Faraj KA, Elias MM, Al-Mashhadani AH, Baatout S (2011) Effect of X- and gamma rays on DNA in human cells. Eur J Sci Res 53: 470–476

Fernet M, Hall J (2004) Genetic biomarkers of therapeutic radiation sensitivity. DNA Repair 3: 1237–1243. doi: 10.1016/j.dnarep.2004.03.019

Güerci A, Zúñiga L, Marcos R (2011) Construction and validation of a dose-response curve using the comet assay to determine human radiosensitivity to ionizing radiation. J Toxicol Environ Health A 74: 1087–1093. doi: 10.1080/15287394.2011.582318

Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement MV (2014) OpenComet: An automated tool for comet assay image analysis. Redox Biol 2: 457–465. doi: 10.1016/j.redox.2013.12.020

Islam J, Kabir Y (2019) Measurement of DNA damage in bladder cancer patients by alkaline comet assay. Ann Urol Oncol 2: 64–70. doi: 10.32948/auo.2019.12.26

Kaur S, Sangeeta, Galhna KK, Gautam N (2017) Assessment of radiation induced DNA damage in human peripheral blood lymphocytes using COMET assay. Int J Life Sci Scienti Res 3: 1208–1214. doi: 10.21276/ijlssr.2017.3.4.17

Kiziltan E, Yurtcu E (2015) Semi-automatic scoring tool for comet assay. J Serbian Soc Comput Mech 9: 27–33. doi: 10.5937/jsscm1502027K

Kopjar N, Zeljezi? D, Garaj-Vrhovac V (2006) Evaluation of DNA damage in white blood cells of healthy human volunteers using the alkaline comet assay and the chromosome aberration test. Acta Biochim Pol 53: 321–336. PMID: 16582984

Kumaravel TS, Jha AN (2006) Reliable comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res 605: 7–16. doi: 10.1016/j.mrgentox.2006.03.002

Liauw SL, Connell PP, Weichselbaum RR (2013) New paradigms and future challenges in radiation oncology: An update of biological targets and technology. Sci Transl Med 5: 173sr2. doi: 10.1126/scitranslmed.3005148

Lomax ME, Folkes LK, O’Neill P (2013) Biological consequences of radiation-induced DNA damage?: Relevance to radiotherapy. Clin Oncol 25: 578–585. doi: 10.1016/j.clon.2013.06.007

Lu Y, Liu Y, Yang C (2017) Evaluating in vitro DNA damage using comet assay. J Vis Exp 2017: 56450. doi: 10.3791/56450

Martin NE, D’Amico AV (2014) Progress and controversies: Radiation therapy for prostate cancer. CA Cancer J Clin 64: 389–407. doi: 10.3322/caac.21250

Masuda Y, Kamiya K (2012) Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity. Int J Hematol 95: 239–245. doi: 10.1007/s12185-012-1008-y

Moller P, Knudsen LE, Loft S, Wallin H (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 9: 1005–1015. PMID: 11045781

Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV (2011) Evaluation of DNA damage using single-cell gel electrophoresis (comet assay). J Pharmacol Pharmacother 2: 107–111. doi: 10.4103/0976-500X.81903

O’Connor MJ (2015) Targeting the DNA damage response in cancer. Mol Cell 60: 547–560. doi: 10.1016/j.molcel.2015.10.040

Rehman JU, Zahra, Ahmad N, Khalid M, Khan Asghar HMNH, Gilani ZA, Ullah I, Nasar G, Akhtar MM, Usmani MN (2018) Intensity modulated radiation therapy: A review of current practice and future outlooks. J Radiat Res Appl Sci 11: 361–367. doi: 10.1016/j.jrras.2018.07.006

Schmeiser HH, Muehlbauer KR, Mier W, Baranski AC, Neels O, Dimitrakopoulou-Strauss A, Schmezer P, Kratochwil C, Bruchertseifer F, Morgenstern A, Kopka K (2019) DNA damage in human whole blood caused by radiopharmaceuticals evaluated by the comet assay. Mutagenesis 34: 239–244. doi: 10.1093/mutage/gez007

Schulz N, Chaachouay H, Nytko KJ, Weyland MS, Roos M, Füchslin RM, Guscetti F, Scheidegger S, Bley CR (2017) Dynamic in vivo profiling of DNA damage and repair after radiotherapy using canine patients as a model. Int J Mol Sci 18: 1176. doi: 10.3390/ijms18061176

Silva RG, Alencar MVOB, Teixeira JS, e Silva RR, Paz MFCJ, de Castro JM, de Aguiar RPS, de Carvalho RM, Júnior ALG, da Mata AMOF, de Oliveira JV, Islam MT, Ferreira PMP, Melo-Cavalcante AAC, Picada JN (2016) Genotoxicity and DNA repair indicative in blood cells after occupational exposure to ionizing radiation. Int Arch Med 9: 1–13. doi: 10.3823/1992

Toulany M (2019) Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes (Basel) 10: 25. doi: 10.3390/genes10010025

UNEP (2016) Radiation Effects and Sources: What is radiation? What does radiation do to us? Where does radiation come from? United Nations Environment Programme, United Nations, New York. doi: 10.18356/b1749f17-en

Vilalta M, Rafat M, Giaccia AJ, Graves EE (2014) Recruitment of circulating breast cancer cells is stimulated by radiotherapy. Cell Rep 8: 402–409. doi: 10.1016/j.celrep.2014.06.011

Vodicka P, Vodenkova S, Opattova A, Vodickova L (2019) DNA damage and repair measured by comet assay in cancer patients. Mutat Res 843: 95–110. doi: 10.1016/j.mrgentox.2019.05.009

Yarnold J (2018) Changes in radiotherapy fractionation – breast cancer. Br J Radiol 92: 20170849. doi: 10.1259/bjr.20170849

Yusuf D, Tur R, Syaifudin M (2018) Evaluasi hubungan dosis radiasi terhadap kerusakan DNA sel limfosit dengan menggunakan tes comet. J Sains Teknol Nuklir Indones 19: 13–20. doi: 10.17146/jstni.2018.19.1.3658

Yusuf D, Tur R, Suvivan VA (2020) A preliminary study on DNA damage in peripheral blood of cancer patients after radiotherapy with comet assay. The proceedings of the 2nd Bakti Tunas Husada-Health Science International Conference (BTH-HSIC 2019), Series Adv Health Sci Res 26: 228–32. doi: 10.2991/ahsr.k.200523.056

Zedginidze A, Namchevadze E, Ormocadze G, Kapanadze A, Nikuradze T, Lomidze D (2016) Biodosimetry of persons chronically exposed to low and therapeutic doses of ionizing radiation. Genome Integr 7: 12. doi: 10.4103/2041-9414.197169