PERUBAHAN KANDUNGAN ASAM FITAT DAN ASAM AMINO ESENSIAL BAHAN-BAHAN ORGANIK PAKAN YANG DIFERMENTASI RAGI TEMPE

Main Article Content

Arina Muniroh
Imam Suja'i
Aji Wibowo
Henry Kasman Hadi Saputra
Etyn Yunita
Catur Sriherwanto

Abstract

Changes in the Contents of Phytic Acid and Essential Amino Acids of Animal Feed Organic Materials Fermented by Tempe Starter


The contents of antinutrients and nutrients are important in the selection of feed ingredients, especially for monogastric animals. The aim of this study is to determine the change in the contents of antinutrient phytic acid and nutrient essential amino acid in selected organic materials. Nine organic ingredients of agro-industrial by-products, namely rice bran, coffee skin, cassava bagasse, corn, coconut dreg, soy bean meal, pollard, corn gluten feed (CGF), and copra meal were fermented in solid state using tempeh starter for 48 hours at 30°C. Dense mycelia overgrowing evenly on the top, bottom, and cross-sliced surfaces was observed on rice bran, maize and copra meal substrates. These 3 selected organic materials were then analysed for the content of phytic acid and essential amino acids. The results showed that the lowest decrease (75.80%) in phytic acid content occurred in maize, namely from 18.49 ± 0.41 mg g-1 (before fermentation) to 4.48 ± 0.19 mg g-1 (after fermentation). The highest increase (59%) of total essential amino acids occurred in copra meal, namely from 38,991.89 ± 447.12 mg kg-1 (before fermentation) to 61,816.56 ± 894.24 mg kg-1 (after fermentation).


Kandungan antinutrisi dan nutrisi merupakan hal penting dalam pemilihan bahan pakan, terutama untuk hewan monogastrik. Penelitian ini bertujuan mengetahui perubahan kandungan antinutrisi asam fitat dan nutrisi asam amino esensial pada bahan organik tertentu yang terpilih. Sembilan bahan organik yang merupakan hasil samping agroindustri, yakni dedak padi, kulit kopi, onggok, jagung, ampas kelapa, bungkil kedelai (soy bean meal), dedak gandum (pollard), produk samping jagung corn gluten feed (CGF), dan bungkil kopra difermentasi padat menggunakan ragi tempe selama 48 jam pada suhu 30°C. Miselium yang tumbuh subur, padat, dan merata pada permukaan atas, bawah, dan irisan melintang teramati pada dedak padi, jagung, dan bungkil kopra. Tiga bahan organik terpilih ini kemudian dianalisa kandungan asam fitat dan asam amino esensialnya. Hasil menunjukkan bahwa penurunan terbesar (75,80%) kandungan asam fitat terjadi pada jagung, yakni dari 18,49 ± 0,41 mg g-1 (sebelum fermentasi) menjadi 4,48 ± 0,19 mg g-1 (setelah fermentasi). Peningkatan tertinggi (59%) asam amino esensial total terjadi pada bungkil kopra, yakni dari 38.991,89 ± 447,12 mg kg-1 (sebelum fermentasi) menjadi 61.816,56 ± 894,24 mg kg-1 (setelah fermentasi).

Article Details

How to Cite
Muniroh, A., Suja’i, I., Wibowo, A., Saputra, H. K. H. ., Yunita, E., & Sriherwanto, C. (2021). PERUBAHAN KANDUNGAN ASAM FITAT DAN ASAM AMINO ESENSIAL BAHAN-BAHAN ORGANIK PAKAN YANG DIFERMENTASI RAGI TEMPE. Jurnal Bioteknologi &Amp; Biosains Indonesia (JBBI), 8(1), 42–56. https://doi.org/10.29122/jbbi.v8i1.4743
Section
Research Articles

References

Ables GP (2020) Sulfur amino acid-restricted diets: Mechanisms and health benefits. In: Reference Module in Life Sciences. Elsevier. doi: 10.1016/B978-0-12-819460-7.00061-X

Abu-Salem FM, Mohamed RK, Gibriel AY, Rasmy NM (2014) Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. Int J Biol Agric Biosyst Life Sci Eng 8: 280–285. doi: 10.5281/zenodo.1093040

Ahmad A, Ramasamy K, Majeed ABA, Mani V (2015) Enhancement of ?-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm Biol 53: 758–766. doi: 10.3109/13880209.2014.942791

Ahnan?Winarno AD, Cordeiro L, Winarno FG, Gibbons J, Xiao H (2021) Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Compr Rev Food Sci Food Saf 20: 1717–1767. doi: 10.1111/1541-4337.12710

Alhomodi AF, Zavadil A, Berhow M, Gibbons WR, Karki B (2021) Composition of canola seed sprouts fermented by Aureobasidium pullulans, Neurospora crassa, and Trichoderma reesei under submerged-state fermentation. Food Bioprod Process 126: 256–264. doi: 10.1016/j.fbp.2021.01.008

Anaemene DI, Fadupin GT (2020) Effect of fermentation, germination and combined germination-fermentation processing methods on the nutrient and anti-nutrient contents of quality protein maize (QPM) seeds. J Appl Sci Environ Manag 24: 1625–1630. doi: 10.4314/jasem.v24i9.21

Anigboro AA, Aganbi E, Tonukari NJ (2020) Solid state fermentation of maize (Zea mays) offal by Rhizopus oligosporus under acidic and basic conditions. J Sci Res 12: 751–756. doi: 10.3329/jsr.v12i4.46993

Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int J Biol Macromol 86: 656–669. doi: 10.1016/j.ijbiomac.2015.10.090

Cai S, Gao F, Zhang X, Wang O, Wu W, Zhu S, Zhang D, Zhou F, Ji B (2014) Evaluation of ?- aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. J Food Sci Technol 51: 2544–2551. doi: 10.1007/s13197-012-0748-2

Castro?Alba V, Lazarte CE, Perez?Rea D, Carlsson N, Almgren A, Bergenståhl B, Granfeldt Y (2019) Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric 99: 5239–5248. doi: 10.1002/jsfa.9793

Chen L, Vadlani PV, Madl RL, Gibbons W (2016) Degradation of phytic acid and soy protein in soy meal via co-fermentation of Aspergillus oryzae and Aspergillus ficuum. J Am Oil Chem Soc 93: 45–50. doi: 10.1007/s11746-015-2754-9

Chen L, Vadlani PV, Madl RL (2014) High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation. J Sci Food Agric 94: 113–118. doi: 10.1002/jsfa.6209

Dinata AANBS, Utami ASJ (2019) Nutrient content of coffee berries husk fermented with different inoculants. IOP Conf Ser: Earth Environ Sci 387: 012006. doi: 10.1088/1755-1315/387/1/012006

Duli?ski R, Stodolak B, Byczy?ski ?, Poreda A, Starzy?ska-Janiszewska A, ?y?a K (2017) Solid-state fermentation reduces phytic acid level, improves the profile of myo-inositol phosphates and enhances the availability of selected minerals in flaxseed oil cake. Food Technol Biotechnol 55:413–419. doi: 10.17113/ftb.55.03.17.4981

Duodu CP, Adjei-Boateng D, Edziyie RE, Agbo NW, Owusu-Boateng G, Larsen BK, Skov PV (2018) Processing techniques of selected oilseed by-products of potential use in animal feed: Effects on proximate nutrient composition, amino acid profile and antinutrients. Anim Nutr 4: 442–451. doi: 10.1016/j.aninu.2018.05.007

Erizal E, Lana M, Setyo R, Abbas B (2016) Sintesis dan karakterisasi hidrogel superabsorben berbasis asam akrilat hasil iradiasi gamma. J Ilm Apl Isot dan Radiasi 11: 27–38. doi: 10.17146/jair.2015.11.1.2697

Fischer MM, Egli IM, Aeberli I, Hurrell RF, Meile L (2014) Phytic acid degrading lactic acid bacteria in tef-injera fermentation. Int J Food Microbiol 190: 54–60. doi: 10.1016/j.ijfoodmicro.2014.08.018

Gmoser R, Fristedt R, Larsson K, Undeland I, Taherzadeh MJ, Lennartsson PR (2020) From stale bread and brewers spent grain to a new food source using edible filamentous fungi. Bioengineered 11: 582–598. doi: 10.1080/21655979.2020.1768694

Godoy MG, Amorim GM, Barreto MS, Freire DMG (2018) Agricultural residues as animal feed. In: Current Developments in Biotechnology and Bioengineering. Elsevier, pp 235–256. doi: 10.1016/B978-0-444-63990-5.00012-8

Gonzalez-Uarquin F, Kenéz, Rodehutscord M, Huber K (2020) Dietary phytase and myo-inositol supplementation are associated with distinct plasma metabolome profile in broiler chickens. Animal 14: 549–559. doi: 10.1017/S1751731119002337

Hafsah, Damry HB, Hata U, Sundu B (2020) Fermented coconut dregs quality and their efects on the performance of broiler chickens. Trop Anim Sci J 43: 219–226. doi: 10.5398/tasj.2020.43.3.219

Hashemi SMB, Gholamhosseinpour A, Mousavi Khaneghah A (2019) Fermentation of acorn dough by lactobacilli strains: Phytic acid degradation and antioxidant activity. LWT Food Sci Technol 100: 144–149. doi: 10.1016/j.lwt.2018.10.054

Ibarruri J, Cebrián M, Hernández I (2021) Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. J Environ Manage 281: 111901. doi: 10.1016/j.jenvman.2020.111901

Janarny G, Gunathilake KDPP (2020) Changes in rice bran bioactives, their bioactivity, bioaccessibility and bioavailability with solid-state fermentation by Rhizopus oryzae. Biocatal Agric Biotechnol 23: 101510. doi: 10.1016/j.bcab.2020.101510

Kuligowski M, Paw?owska K, Jasi?ska-Kuligowska I, Nowak J (2016) Iso?avone composition, polyphenols content and antioxidative activity of soybean seeds during tempeh fermentation. CyTA - J Food 15: 1–7. doi: 10.1080/19476337.2016.1197316

Kumar V, Sinha AK (2018) Chapter 3 - General aspects of phytases. In: Nunes CS, Kumar V (eds) Enzymes in Human and Animal Nutrition, 1st edn. Academic Press, pp 53–72. doi: 10.1016/b978-0-12-805419-2.00003-4

Laining A, Usman U, Syah R (2017) Nutritive value of copra cake meal fermented with Rhizopus spp. and its use as a protein source in practical diets for rabbitfish (Siganus javus). J Appl Aquac 29: 307–321. doi: 10.1080/10454438.2017.1359726

Majzoobi M, Pashangeh S, Farahnaky A, Eskandari MH, Jamalian J (2014) Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran. J Food Sci Technol 51: 2755–2761. doi: 10.1007/s13197-012-0802-0

Marsetyo, Sulendre IW, Mustaring, Pamulu M (2021) The effect of fermentation without or with lactic acid bacteria and storage time on the phytic acid, in vitro dry matter digestibility, and nutrient contents of rice bran. J Phys Conf Ser 1763: 012029. doi: 10.1088/1742-6596/1763/1/012029

Massarolo KC, de Souza TD, Ribeiro AC, Furlong EB, de Souza Soares LA (2016) Influence of cultivation Rhizopus oryzae on rice bran on lipid fraction: Fatty acids and phospholipids. Biocatal Agric Biotechnol 8: 204–208. doi: 10.1016/j.bcab.2016.10.002

Miller EL (2003) Protein nutrition requirements of farmed livestock and dietary supply. In: Protein Sources for the Animal Feed Industry. FAO, Rome, pp 29–76

Niveditha VR, Sridhar KR (2016) Improvement of nutritional qualities of fermented kernels of wild legume Canavalia cathartica by Rhizopus oligosporus. Curr Biochem Eng 3: 128-138. doi: 10.2174/2212711902666150701190732

Olagunju OF, Ezekiel OO, Ogunshe AO, Oyeyinka SA, Ijabadeniyi OA (2018) Effects of fermentation on proximate composition, mineral profile and antinutrients of tamarind (Tamarindus indica L.) seed in the production of daddawa-type condiment. LWT - Food Sci Technol 90: 455–459. doi: 10.1016/j.lwt.2017.12.064

Olukomaiya OO, Fernando WC, Mereddy R, Zhang D, Li X, Sultanbawa Y (2019) Phytic acid reduction in canola and camelina meals by fungal fermentation for potential broiler feeding. In: Proceedings of the Australian Poultry Science Symposium, vol. 30. The World's Poultry Science Association, Sydney, p 203

Omodara TR, Aderibigbe EY (2019) Comparative studies on the effect of fermentation on the nutritional compositions and anti-nutritional levels of Glycine max fermented products: Tempeh and soy-iru. Annu Res Rev Biol 32: 1–9. doi: 10.9734/arrb/2019/v32i430094

Polanowska K, Grygier A, Kuligowski M, Rudzi?ska M, Nowak J (2020) Effect of tempe fermentation by three different strains of Rhizopus oligosporus on nutritional characteristics of faba beans. LWT Food Sci Technol 122: 109024. doi: 10.1016/j.lwt.2020.109024

Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M (2020) Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. In: Advances in Genetics. Academic Press Inc., pp 89–120. doi: 10.1016/bs.adgen.2020.11.003

Romano N, Kumar V (2018) Chapter 4 - Phytase in animal feed. In: Nunes CS, Kumar V (eds) Human and Animal Nutrition. Academic Press, pp 73–88. doi: 10.1016/B978-0-12-805419-2.00004-6

Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod Process Nutr 2: 1–14. doi: 10.1186/s43014-020-0020-5

Sánchez-Magaña LM, Reyes-Moreno C, Milán-Carrillo J, Mora-Rochín S, León-López L, Gutiérrez-Dorado R, Cuevas-Rodríguez EO (2019) Influence of solid-state bioconversion by Rhizopus oligosporus on antioxidant activity and phenolic compounds of maize (Zea mays L.). Agrociencia 53: 45-57

Sandberg AS, Scheers N (2016) Phytic acid: Properties, uses, and determination. In: Encyclopedia of Food and Health. Elsevier Inc., pp 365–368. doi: 10.1016/B978-0-12-384947-2.00544-4

Shitan N, Yazaki K (2013) New insights into the transport mechanisms in plant vacuoles. In: International Review of Cell and Molecular Biology. Elsevier Inc., pp 383–433. doi: 10.1016/B978-0-12-407695-2.00009-3

Shurtleff W, Aoyagi A (2020) History of Tempeh and Tempeh Products (1815-2020): Extensively Annotated Bibliography and Sourcebook. Soyinfo Center, Lafayette, USA

Sitanggang AB, Sinaga WSL, Wie F, Fernando F, Krusong W (2020) Enhanced antioxidant activity of okara through solid state fermentation of GRAS fungi. Food Sci Technol 40: 178–186. doi: 10.1590/fst.37218

Sukma A, Jos B, Sumardiono S (2018) Kinetic of biomass growth and protein formation on rice bran fermentation using Rhizopus oryzae. MATEC Web Conf 156: 01023. doi: 10.1051/matecconf/201815601023

Suresh S, Radha KV (2015) Effect of a mixed substrate on phytase production by Rhizopus oligosporus MTCC 556 using solid state fermentation and determination of dephytinization activities in food grains. Food Sci Biotechnol 24: 551–559. doi: 10.1007/s10068-015-0072-5

Suresh S, Radha KV (2016) Statistical optimization and mutagenesis for high level of phytase production by Rhizopus oligosporus MTCC 556 under solid state fermentation. J Environ Biol 37: 253–259.

Suresh S, Radha K V, Surya KK, Vanitha S, Suresh S (2013) Production and optimization of phytase from Rhizopus oligosporus using agro residues by solid state fermentation. Artic Middle East J Sci Res 17: 1839–1845. doi: 10.5829/idosi.mejsr.2013.17.12.116

Tahuk PK, Budhi SPS, Panjono, Baliarti E (2016) In vitro characteristics of rumen fermentation of fattening rations with different protein-energy levels fed to Bali cattle. Pakistan J Nutr 15: 897–904. doi: 10.3923/pjn.2016.897.904

Tudor KW, Jones MA, Hughes SR, Holt JP, Wiegand BR (2013) Effect of fermentation with Saccharomyces cerevisiae strain PJ69-4 on the phytic acid, raffinose, and stachyose contents of soybean meal. Prof Anim Sci 29:529–534. doi: 10.15232/s1080-7446(15)30274-6

Venkatasubbaiah R, Rajesh SK (2020) Food processing and fermentation studies on reduction of phytic acid in Triticum aestivum and Sorghum bicolor (L.). J Microbiol Biotechnol Food Sci 10: 166–169. doi: 10.15414/jmbfs.2020.10.2.166-169

Verni M, Rizzello CG, Coda R (2019) Fermentation biotechnology applied to cereal industry by-products: Nutritional and functional insights. Front Nutr 6:42. doi: 10.3389/fnut.2019.00042

Villacrés E, Quelal MB, Fernández E, Garcìa G, Cueva G, Rosell CM (2020) Impact of debittering and fermentation processes on the antinutritional and antioxidant compounds in Lupinus mutabilis sweet. LWT Food Sci Technol 131: 109745. doi: 10.1016/j.lwt.2020.109745

Vong WC, Hua XY, Liu SQ (2018) Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT - Food Sci Technol 90: 316–322. doi: 10.1016/j.lwt.2017.12.050

Xiao Y, Fan J, Chen Y, Rui X, Zhang Q, Dong M (2016) Enhanced total phenolic and isoflavone aglycone content, antioxidant activity and DNA damage protection of soybeans processed by solid state fermentation with Rhizopus oligosporus RT-3. RSC Adv 6: 29741–29756. doi: 10.1039/C6RA00074F

Yildirim RM, Arici M (2019) Effect of the fermentation temperature on the degradation of phytic acid in whole-wheat sourdough bread. LWT Food Sci Technol 112: 108224. doi: 10.1016/j.lwt.2019.05.122

Most read articles by the same author(s)

1 2 3 4 > >>