THE APPLICATION OF Fe AND Cr(III) IN GROWING MEDIA AND ITS EFFECT ON PLANT GROWTH AND Cr(III) OXIDATION ON Tagetes erecta
Main Article Content
Abstract
The oxidation of Cr(III) to Cr(VI) in the environment has a detrimental impact because it can change the form of non-toxic Cr(III) to Cr(VI), which is toxic to organisms. The study aimed to examine the effect of the application of iron (Fe) and trivalent chromium (Cr(III)) compounds in Tagetes erecta growing media on growth and Cr(III) oxidation. Concentrations of Cr(III) 0, 100, and 500 mg/L and Fe 0, 3, 15, and 30 mg/L were applied to the growing media of T. erecta as the model plant. The growth and accumulation of Cr(VI) in plants were measured to determine the effect of Fe and Cr(III) treatment on growth and Cr(III) oxidation. The accumulation of Cr(VI) in the roots and shoots of T. erecta increased significantly due to the addition of Fe in the growing media treated with Cr(III). The highest accumulation of Cr(VI) in the roots and shoots of T. erecta found in the treatment of Cr(III) 500 mg/L and Fe 30 mg/L, were respectively 0.092 g/L and 0.070 g/L. The addition of Fe in growing media containing Cr(III) increased plant height, root length, and shoot dry weight but decreased leaf number and root dry weight. T. erecta root biomass was more affected by the toxic impact of Fe than Cr(III). On the other hand, the inhibition of leaf formation was caused by the toxic effect of Cr(III) rather than Fe.
Oksidasi Cr(III) menjadi Cr(VI) di lingkungan mempunyai dampak merugikan, karena dapat mengubah bentuk Cr(III) dari tidak toksik menjadi bentuk Cr(VI) yang toksik bagi organisme. Tujuan penelitian adalah untuk mengkaji efek aplikasi senyawa besi (Fe) dan kromium trivalen (Cr(III)) dalam media tanam Tagetes erecta terhadap pertumbuhan dan oksidasi Cr(III). Konsentrasi Cr(III) 0, 100 dan 500 mg/L dan Fe 0, 3, 15 dan 30 mg/L diaplikasikan dalam media tanam T. erecta sebagai tanaman uji. Pertumbuhan dan akumulasi Cr(VI) pada tanaman diukur untuk mengetahui efek perlakuan dan mendeteksi terjadinya oksidasi Cr(III). Akumulasi Cr(VI) pada akar dan pucuk T. erecta mengalami peningkatan secara nyata akibat penambahan Fe dalam media tanam yang diberi perlakuan Cr(III). Akumulasi Cr(VI) pada akar dan pucuk T. erecta tertinggi dijumpai pada perlakuan Cr(III) 500 mg/L dan Fe 30 mg/L berturut-turut adalah 0,092 g/L dan 0,070 g/L. Penambahan Fe dalam media tanam mengandung Cr(III) meningkatkan pertumbuhan tinggi tanaman, panjang akar dan berat kering pucuk, namun menurunkan jumlah daun dan berat kering akar. Biomassa akar T. erecta lebih dipengaruhi oleh efek toksik Fe dibandingkan Cr(III), sebaliknya penghambatan pembentukan daun lebih disebabkan oleh efek toksik Cr(III) daripada Fe.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bardiya-Bhurat K, Sharma S, Mishra Y, Patanka C (2017) Tagetes erecta (marigold), a phytoremediant for Ni- and Pb-contaminated area: A hydroponic analysis and factors involved. Rend Fis Acc Lincei 28:673-678. doi: 10.1007/s12210-017-0636-9
Barouchas P, Moustakas N, Liopa-Tsakalidi A, Akoumianaki-Ioannidou A (2014) Effect of trivalent and hexavalent chromium (Cr) on the total Cr concentration in the vegetative plant parts of spearmint (Mentha spicata L.), lemon verbena (Lippia citriodora L.) and peppermint (Mentha piperita L.). Aust J Crop Sci 8:363-368
Butler EC, Chen L, Hansel CM, Krumholz LR, Elwood Madden AS, Lan Y (2015) Biological versus mineralogical chromium reduction: Potential for reoxidation by manganese oxide. Environ Sci Process Impacts 17:1930-1940. doi: 10.1039/C5EM00286A
Caesar J, Tamm A, Ruckteschler N, Leifke AL, Weber B (2018) Revisiting chlorophyll extraction methods in biological soil cruts - Methodology for determination of chlorophyll ? and chlorophyll ? + ? as compared to previous methods. Biogeosci 15:1415-1424. doi: 10.5194/bg-15-1415-2018
Chebeir M, Liu H (2018) Oxidation of Cr(III)?Fe(III) mixed-phase hydroxides by chlorine: Implications on the control of hexavalent chromium in drinking water. Environ Sci Technol 52:7663-7670. doi: 10.1021/acs.est.7b06013
Cheng CH, Jien SH, Iizuka Y, Tsai H, Chang YH, Hseu ZY (2011) Pedogenic chromium and nickel partitioning in serpentine soil along a toposequence. Soil Sci Soc Am J 75:659-668. doi: 10.2136/sssaj2010.0007
Chitraprabha K, Sathyavathi S (2018) Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.). Sustain Environ Res 28:128-134. doi: 10.1016/j.serj.2018.01.002
Coelho LC. Bastos ARR, Pinho PJ, Souza GA, Carvalho JG, Coelho VAT, Oliveira LCA, Domingues RR, Faquin V (2017) Marigold (Tagetes erecta): The potential value in the phytoremediation of chromium. Pedosphere 27:559-568. doi: 10.1016/S10020160(17)60351-5
Dey U, Mondal NK (2016) Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environ Sci 2:1196472. doi: 10.1080/23311843.2016.1196472
Dube BK, Sinha P, Chatterjee C (2009) Assessment of disturbance in growth and physiology of carrot caused by chromium stress. J Plant Nutr 32:479-488. doi: 10.1080/01904160802679925
Gheju M, Balcu I, Ciopec M (2009) Analysis of hexavalent chromium uptake by plants in polluted soils. Ovidius Univ Ann Chem 20:127-131. Corpus ID: 9935825
Gopal R, Rizvi AH, Nautiyah N (2009) Chromium alters iron nutrition and water relation of spinach. J Plant Nutr 32:1551-1559. doi: 10.1080/01904160903094313
Hausladen DM, Fendorf S (2017) Hexavalent chromium generation within naturally structured soils and sediments. Environ Sci Technol 51:2058-2067. doi: 10.1021/acs.est.6b04039
Hemalatha R, Ouwehand AC, Saarinen MT, Prasad UV, Swetha K, Bhaskar V (2017) Effect of probiotic supplementation on total lactobacilli, bifidobacteria and short chain fatty acids in 2-5-year-old children. Microb Ecol Health Dis 28:1298340. doi: 10.1080/16512235.2017.1298340
Horie M, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamaru A, Kinugasa S, Yamamoto K, Niki E, Yoshida Y, Iwahasi H (2013) Chromium(III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environ Toxicol 28:61-75. doi: 10.1002/tox.20695
Kasmiyati S, Santosa S, Priyambada ID, Dewi K, Sucahyo S, Sandradewi R (2016) Growth response of Sorghum bicolor (L.) Moench. cultivars to trivalent chromium stress. Biosaintifika 8:73-86. doi: 10.15294/biosaintifika.v8i1.5178
Lionel S, Karunakaran RJ (2017) Effect of biochar application on the chromium uptake of Canna indica L. from chromium spiked soil. J Pharmacogn Phytochem 6:146-152. Corpus ID: 5568728
Madanan MT, Shah IK, Varghese GK, Kaushal RK (2021) Application of Aztec Marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environ Chem Ecotoxicol 3:17-22. doi: 10.1016/j.enceco.2020.10.007
Maryani N, Lombard L, Poerba YS, Subandiyah S, Crous PW, Kema GHJ (2019) Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian center of origin. Stud Mycol 92:155-194. doi: 10.1016/j.simyco.2018.06.003
Miao Q, Yan J (2012) Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. J Mater Cycles Waste Manag 15:98-105. doi: 10.1007/s10163-012-0095-4
Moncekova M, Novotny R, Koplik J, Kalina L, Bilek V, Soukal F (2016) Hexavalent chromium reduction by ferrous sulphate heptahydrate addition into the Portland clinker. Procedia Eng 151:73-79. doi: 10.1016/j.proeng.2016.07.382
Narayani M, Shetty KV (2013) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Crit Rev Environ Sci Technol 43:955-1009. doi: 10.1080/10643389.2011.627022
Nematshahi N, Lahouti M, Gajeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2:969-974. Corpus ID: 55031559
Oliveira H (2012) Chromium as an environmental pollutant: Insights on induced plant toxicity. J Bot 2012:375843. doi: 10.1155/2012/375843
Pardo SA, Kindsvater HK, Cuevas-Zimbrón E, Sosa-Nishizaki O, Perez-Jimenez J, Dulvy NK (2016) Growth, productivity and relative extinction risk of a data-sparse devil ray. Sci Rep 6:33745. doi: 10.1038/srep33745
Parihar A, Malaviya P (2015) Effect of textile effluent on the growth and pigment content of Tagetes erecta L. (var. Pusa basanti). Indian J Appl Res 5:1-3. Corpus ID: 112916705
Rajapaksha AU, Vithanage M, Ok YS, Oze C (2013) Cr(VI) formation related to Cr(III)-muscovite and birnessite interactions in ultramafic environments. Environ J Sci Technol 47:9722-9729. doi: 10.1021/es4015025
Rodriguez E, Santos C, Azevedo R, Moutinho-Pereira J, Correia C, Dias MC (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem 53:94-100. doi: 10.1016/j.plaphy.2012.01.013
Sawicka E, Jurkowska K, Piwowar A (2020) Chromium (III) and chromium (VI) as important players in the induction of genotoxicity – current view. Ann Agric Environ Med 28:1-10. doi: 10.26444/aaem/118228
Shadreck M, Mugadza T (2013) Chromium, an essential nutrient and pollutant: A review. Afr J Pure Appl Chem 7:310-317. doi: 10.5897/AJPAC2013.0517
Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J Hazard Mater 325:36-58. doi: 10.1016/j.jhazmat.2016.11.063
Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739-753. doi: 10.1016/j.envint.2005.02.003
Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan H, Yan D (2020) Chromium bioaccumulation and its impacts on plants: An overview. Plants 19:100. doi: 10.3390/plants9010100
Shiyab S (2019) Morphophysiological effects of chromium in sour orange (Citrus aurantium L.). HortSci 54:829-834. doi: 10.21273/HORTSCI13809-18
Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran SL (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597-607. doi: 10.1016/j.crvi.2010.03.002
Tang Y, Webb SM, Estes ER, Hansel CM (2014) Chromium(III) oxidation by biogenic manganese oxides with varying structural ripening. Environ Sci Processes Impacts 16:2127-2136. doi: 10.1039/c4em00077c
Tian Y, Zhu Q, Yuan J, Kneepkens R, Yue Y, Zhang C (2021) Direct embryotoxicity of chromium (III) exposure during preimplantation development. J Reprod Dev 67:283-291. doi: 10.1262/jrd.2021-028
Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Saf 113:133-144. doi: 10.1016/j.ecoenv.2014.09.029
Varadharajan C, Beller HR, Bill M, Brodie EL, Conrad ME, Han R, Irwin C, Larsen JT, Lim HC, Molins S, Steefel CI, van Hise A, Yang L, Nico PS (2017) Reoxidation of chromium(III) products formed under different biogeochemical regimes. Environ Sci Technol 51:4918-4927. doi: 10.1021/acs.est.6b06044
Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoid, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307-313. doi: 10.1016/S0176-1617(11)81192-2
Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant and Soil 249:139-156. doi: 10.1023/A:1022504826342