APPLICATION OF RECOMBINANT TRIACYLGLYCEROL LIPASE AND CARBOXYLESTERASE ENZYMES FROM Bacillus velezensis STRAIN S3 FOR POLYESTER SURFACE MODIFICATION

Main Article Content

Ika Rahmatul Layly
Is Helianti
Rika Indri Astuti
Anja Meryandini

Abstract

ABSTRACT


Enzymatic polyester surface modification can be performed with lipase and esterase enzymes. In this study, the polyester fabric modification utilized triacylglycerol lipase (TGA) and carboxylesterase (CES) recombinant enzymes. The effect of these treatments was observed by determining the hydrophilicity level, dye absorption level, hydroxyl group measurement, and fiber surface morphology. The results revealed an elevated hydrophilicity level in polyester fabric, followed by dye absorption improvement and carboxyl group increase. The water absorption times required by the fabric based on the results of TGA, CES, comparative lipase, and negative control treatments were 3±0.05 seconds, 3.5±0.07 seconds, 5±0.05 seconds, and 80±11.54 minutes, respectively. Dye absorption test in polyester fabric based on these groups mentioned above were 52±0.5, 58±0.5, 178±0.5, and 2968±290 seconds. The total hydroxyl group measurement in polyester fabric was observed at 30.9±0.09, 30.5±0.05, 28.6±0.09, and 3 meq/100 g. The SEM observation showed that the enzymatic hydrolysis could alter the porous structure and surface of the fibers.


 


ABSTRAK


Modifikasi permukaan poliester secara enzimatis dengan enzim lipase dan esterase mengubah poliester menjadi hidrofilik. Pada penelitian ini, modifikasi permukaan poliester menggunakan enzim rekombinan Triasilgliserol lipase (TGA) dan Karboksilesterase (CES). Parameter uji meliputii hidrofilisitas, penyerapan warna, pengukuran gugus hidroksil, dan morfologi permukaan serat. Hasil hidrolisis menunjukkan peningkatan hidrofilisitas, penyerapan warna dan gugus karboksil kain poliester. Waktu penyerapan air oleh kain hasil perlakuan enzim TGA, CES, lipase pembanding dan kontrol negatif berturut-turut adalah 3±0,05, 3,5±0,07, 5±0,05 detik dan 80±11,54 menit. Uji serapan warna kain poliester pada kelompok tersebut diatas berturut-turut adalah 52±0,5, 58±0,5, 178±0,5 dan 2968±290 detik. Pengukuran jumlah gugus hidroksil pada kain poliester perlakuan TGA, CES, enzim lipase pembanding dan kontrol negatif adalah 30,9±0,09, 30,5±0,05, 28,6±0,09 dan 3 meq/100 g. Hasil SEM menunjukkan adanya perubahan struktur pori dan permukaan serat.

Article Details

How to Cite
Layly, I. R., Helianti, I., Astuti, R. I., & Meryandini, A. (2022). APPLICATION OF RECOMBINANT TRIACYLGLYCEROL LIPASE AND CARBOXYLESTERASE ENZYMES FROM Bacillus velezensis STRAIN S3 FOR POLYESTER SURFACE MODIFICATION. Jurnal Bioteknologi &Amp; Biosains Indonesia (JBBI), 9(2), 170–181. https://doi.org/10.29122/jbbi.v9i2.5109
Section
Research Articles

References

Al Mamun MH, Mostofa A, Hossain MA, Khan M, Zakaria M, Yeasmin MS (2017) Effect of reactive groups of reactive dyes on dyeing of modal fabrics. Int J Text Sci 6:158-164. doi: 10.5923/j.textile.20170606.04

Ariono D, Aryanti PTP, Wardani AK, Wenten IG (2018) Analysis of protein separation mechanism in charged ultrafiltration membrane. J Eng Technol Sci 50:202-223. doi: 10.5614/j.eng.technol.sci.2018.50.2.4

Chandra P, Enespa, Singh R, Arora PK (2020) Microbial lipases and their industrial application: A comprehensive review. Microb Cell Fact 19:169. doi: 10.1186/s12934-020-01428-8

Edupuganti S, Parcha L, Mangamoori LN (2017) Purification and characterization of extracellular lipase from Staphylococcus epidermidis (MTCC 10656). J Appl Pharm Sci 7:57-63. doi: 10.7324/JAPS.2017.70108

El-Ola SMA, Moharam ME, El-Bendary MA (2013) Optimum conditions for surface modification of PET by lipase enzymes produced by Egyptian bacilli in comparison with standard one. Indian J Fibre Text Res 38:165-172. Corpus ID: 100087339

El-Shemy NS, El-Hawary NS, El-Sayed H (2016) Basic and reactive-dyeable polyester fabrics using lipase enzymes. J Chem Eng Process Technol 7:271. doi: 10.4172/2157-7048.1000271

Fernandes L (2021) Polyester fiber production globally 1975-2020. https://www.statista.com/statistics/912301/polyester-fiber-production-worldwide/. Accessed 9 Augustus 2022

Ibrahim DF, El-Salam SHA (2012) Enzymatic treatment of polyester fabrics digitally printed. J Text Sci Eng 2:3. doi: 10.4172/2165-8064.1000113

Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390- 397. doi: 10.1016/s0167-7799(98)01195-0

Kantouch A, Raslan WM, El-Sayed H (2005) Effect of lipase pretreatment on the dyeability of wool fabric. J Nat Fibers 2: 35-48. doi: 10.1300/J395v02n02_03

Kardas I, Lipp-Symonowicz B, Sztajnowski S, Wojciechowska D (2014) The influence of pet fibres surface enzymatic modification on the selected properties 14:179-186. doi: 10.2478/aut-2014-0020

Kawai F, Kawase T, Shiono T, Urakawa H, Sukigara S, Tu C, Yamamoto M (2017) Enzymatic hydrophilization of polyester fabrics using a recombinant cutinase cut 190 and their surface characterization. J Fiber Sci Technol 73:8-18. doi 10.2115/fiberst.2017-0002

Khurana J, Maan P, Cameotra SS, Kaur J (2017) Studies on recombinant lipase production by E. coli: Effect of media and bacterial expression system optimization. Int J Mol Biol 2:17-23. doi: 10.15406/ijmboa.2017.02.00008

Kumar JA, Kumar MS (2020) A study on improving dyeability of polyester fabric using lipase enzyme. Autex Res J 20:1-7. doi: 10.2478/aut-2019-0030

Lee SH, Song WS (2013) Effect of treatments with two lipolytic enzymes on cotton/polyester blend fabrics. J Korean Soc Cloth Text 37:1107-1116. doi: 10.5850/JKSCT.2013.37.8.1107

Li Y, Liu T, Zhao M, Zhang H, Feng F (2019) Screening, purification, and characterization of an extracellular lipase from Aureobasidium pullulans isolated from stuffed buns steamers. J Zhejiang Univ Sci B 20:332-342. doi: 10.1631/jzus.B1800213

Pan H, Chen Y, Yu P (2013) Advanced strategies for improving the production of industrial enzymes in heterologous host systems. Enz Eng 2:2. doi:10.4172/2329-6674.1000114

Purohit J, Chawada G, Choubisa B, Patel M, Dholakiya B (2012) Polyester Polyol derived from waste poly (Ethylene Terephthalate) for coating application on mild steel. Chem Sci J 76:1-7. doi:10.4172/2150-3494.1000053

Rodriguez-Carmona E, Villaverde A, Garcia-Fruitos E (2011) How to break recombinant bacteria: Does it matter? Bioeng Bugs 2:222-225. doi: 10.4161/bbug.2.4.15778

Samanta KK, Basak S, Chattopadhyay SK (2014) Environment-friendly textile processing using plasma and UV treatment. Textile Science and Clothing Technololgy. Springer Science Business Media. Singapore. doi: 10.1007/978-981-287-065-0_6

Sauperl O, Kostic M, Milanovic J, Zemlijc LF (2015) Chemical binding of chitosan and chitosan nanoparticles onto oxidized cellulose. J Eng Fibers Fabr 10:70-77. doi: 10.1177/15589250150010000208

Shahidi S, Wiener J, Ghoranneviss M (2013) Surface modification methods for improving the dyeability of textile fabrics. Eco-Friendly Textile Dyeing and Finishing. Intech, New York, Chapter 2 pp 33-52. doi: 10.5772/53911

Verma N, Thakur S, Bhatt AK (2012) Microbial lipases: Industrial application and properties (A review). Int Res J Biol Sci 1:88-92. doi: 10.1186/s12934-020-01428-8

Vidanarachchi JK, Li S, Lundh AS, Johansson M (2015) Lipolytic activity on milk fat by Staphylococcus aureus and Streptococcus agalactiae strains commonly isolated in Swedish dairy herds. J Dairy Sci 98:8560–8564. doi:10.3168/jds.2015-9559

Zhao Z, Zhou J, Fan T, Li L, Liu Z, Liu Y, Lu M (2017) An effective surface modification of polyester fabrics for improving the interfacial deposition of polypyrrole layer. Preprints 2017, 2017050008. doi: 10.20944/preprints201705.0008.v1