Main Article Content

Muh Riadi
Andi Muliarni Okasa
Rinaldi Sjahril
Meta Mahendradatta
Rafiuddin Rafiuddin



Volatile compound is one of the key factors for aromatic components of rice. This study aimed to identify the key aroma components and their relationship with plant productivity in the Pare Bau variety mutant lines and its wild type. Volatile extraction was carried out using the headspace solid-phase microextraction (HS-SPME) method and analysed by the Gas Chromatography-Mass Spectroscopy (GC-MS) instrument. The results of the identification of volatile compounds showed a total of 224 compounds in the mutant lines and wild type. However, only 14 compounds were suspected as key aroma compounds in Pare Bau rice, namely 2-Acetyl-1-pyrroline, Indole, 1-Octanol, 1-Octen-3-ol, 2,4-Nonadienal, (E,E)-, Octanal, 2-Nonenal, (E)-, 2-Octenal, (E)-, Decanal, Hexanal, Nonanal, Furan, 2-pentyl-, toluene and vanillin. The results on aroma compounds of mutant lines using principal component analysis showed that there were differences in the main characteristics of several strains and wild type. There was no relationship between increasing volatile concentration and plant productivity, vice versa.



Senyawa volatil merupakan salah satu faktor kunci sebagai komponen aromatik beras. Penelitian ini bertujuan untuk mengidentifikasi faktor kunci sebagai komponen aroma dan hubungannya dengan produktivitas pada galur mutan dan Pare Bau (genotipe tetua). Ekstraksi senyawa volatil dilakukan dengan metode headspace solid-phase microextraction (HS-SPME) dan dianalisis dengan instrumen Gas Chromatography-Mass Spectroscopy (GC-MS). Hasil identifikasi senyawa volatil menunjukkan sejumlah 224 senyawa yang terdapat dalam galur mutan dan genotipe tetuanya. Namun, hanya 14 senyawa yang diduga sebagai senyawa aroma utama pada beras Pare Bau, yaitu 2-Acetyl-1-pyrroline, Indole, 1-Octanol, 1-Octen-3-ol, 2,4-Nonadienal, (E,E)-, Oktanal, 2-Nonanal, (E)-, 2-Oktenal, (E)-, Dekanal, Heksanal, Nonanal, Furan, 2-pentil-, toluen dan vanilin. Hasil analisis senyawa aroma galur mutan dengan analisis komponen utama menunjukkan adanya perbedaan karakteristik utama dari beberapa galur dengan genotipe tetuanya. Tidak terdapat hubungan antara peningkatan konsentrasi senyawa volatil dengan produktivitas tanaman.

Article Details

How to Cite
Riadi, M., Okasa, A. M., Sjahril, R. ., Mahendradatta, M., & Rafiuddin, R. (2022). VOLATILE COMPOUND ANALYSIS OF AROMATIC RICE MUTANT LINES USING HS-SPME/GC-MS. Jurnal Bioteknologi &Amp; Biosains Indonesia (JBBI), 9(2), 257–267. https://doi.org/10.29122/jbbi.v9i2.5555
Research Articles


Abdelwareth, A., Zayed, A., & Farag, M. A. (2021). Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its com-mercial blends in the Middle East. Food Chemistry, 349(129162). https://doi.org/10.1016/j.foodchem.2021.129162

Ajarayasiri, J., & Chaiseri, S. (2008). Comparative study on aroma-active compounds in Thai, black and white glutinous rice varieties. Kasetsart Journal - Natural Science, 42(4), 715–722.

Anklam, E., Berg, H., Mathiasson, L., Sharman, M., & Ulberth, F. (1998). Supercritical fluid extraction (SFE) in food analysis: A review. Food Additives and Contaminants, 15(6), 729–750. https://doi.org/10.1080/02652039809374703

Bergman, C. J., Delgado, J. T., Bryant, R., Grimm, C., Cadwallader, K. R., & Webb, B. D. (2000). Rapid gas chromatographic technique for quantifying 2-acetyl-1-pyrroline and hexanal in rice (Oryza sativa, L.). Cereal Chemistry, 77(4), 454–458. https://doi.org/10.1094/CCHEM.2000.77.4.454

Bradbury, L. M. T., Fitzgerald, T. L., Henry, R. J., Jin, Q., & Waters, D. L. E. (2005). The gene for fragrance in rice. Plant Biotechnology Journal, 3(3), 363–370. https://doi.org/10.1111/j.1467-7652.2005.00131.x

Casey C Grimm, Mary An Godshall, Braggins, T. J., & Lloyd, S. W. (2004). Screening for sensory quality in foods using solid phase micro-extraction tandem mass spectrometry. In Quality of Fresh and Processed Foods (pp. 167–174). Springer. https://doi.org/10.1007/978-1-4419-9090-7_11

Champagne, B., & Elaine, T. (2007). Rice Aroma and Flavor A Literature Review - Business News - redOrbit. 85(4), 445–454.

Chen, G., Song, H., & Ma, C. (2009). Aroma-active compounds of Beijing roast duck. Flavour and Fragrance Journal, 24(4), 186–191. https://doi.org/10.1002/ffj.1932

Chen, S., Yang, Y., Shi, W., Ji, Q., He, F., Zhang, Z., Cheng, Z., Liu, X., & Xua, M. (2008). Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 20(7), 1850–1861. https://doi.org/10.1105/tpc.108.058917

Das, A. J., Khawas, P., Miyaji, T., & Deka, S. C. (2014). HPLC and GC-MS analyses of organ-ic acids, carbohydrates, amino acids and volatile aromatic compounds in some varie-ties of rice beer from northeast India. Journal of the Institute of Brewing, 120(3), 244–252. https://doi.org/10.1002/jib.134

Djozan, D., & Ebrahimi, B. (2008). Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: Application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Analytica Chimica Acta, 616(2), 152–159. https://doi.org/10.1016/j.aca.2008.04.037

Dou, T. X., Shi, J. F., Li, Y., Bi, F. C., Gao, H. J., Hu, C. H., Li, C. Y., Yang, Q. S., Deng, G. M., Sheng, O., He, W. Di, Yi, G. J., & Dong, T. (2020). In?uence of harvest season on vola-tile aroma constituents of two banana cultivars by electronic nose and HS-SPME cou-pled with GC-MS. Scientia Horticulturae, 265(November 2019), 109214. https://doi.org/10.1016/j.scienta.2020.109214

Dudareva, N., Klempien, A., Muhlemann, J. K., & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198(1), 16–32. https://doi.org/10.1111/nph.12145

Garvey, E. C., O’Sullivan, M. G., Kerry, J. P., & Kilcawley, K. N. (2020). Optimisation of HS-SPME Parameters for the Analysis of Volatile Compounds in Baked Confectionery Products. Food Analytical Methods, 13(6), 1314–1327. https://doi.org/10.1007/s12161-020-01740-4

Hameed, K., Khan, M. S., Sadaqat, H. A., & Awan, F. S. (2019). Phenotypic characterization of super basmati ethyl methane sulfonate (EMS) induced mutants. Pakistan Journal of Agricultural Sciences, 56(2), 377–384. https://doi.org/10.21162/PAKJAS/19.7671

Jezussek, M., Juliano, B. O., & Schieberle, P. (2002). Comparison of key aroma compounds in cooked brown rice varieties based on aroma extract dilution analyses. Journal of Ag-ricultural and Food Chemistry, 50(5), 1101–1105. https://doi.org/10.1021/jf0108720

Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent devel-opments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/rsta.2015.0202

Kibria, K., Islam, M. M., & Begum, S. N. (2008). Screening of aromatic rice lines by phenotyp-ic and molecular markers. Bangladesh Journal of Botany, 37(2), 141–147. https://doi.org/10.3329/bjb.v37i2.1720

Lehto, S., Laakso, S., & Lehtinen, P. (2003). Enzymatic oxidation of hexanal by oat. Journal of Cereal Science, 38, 199–203. https://doi.org/https://doi.org/10.1016/S0733-5210(03)00028-6

Lim, D. K., Mo, C., Lee, D. K., Long, N. P., Lim, J., & Kwon, S. W. (2018). Non-destructive pro-filing of volatile organic compounds using HS-SPME/GC–MS and its application for the geographical discrimination of white rice. Journal of Food and Drug Analysis, 26(1), 260–267. https://doi.org/10.1016/j.jfda.2017.04.005

Mathure, S. V., Jawali, N., Thengane, R. J., & Nadaf, A. B. (2014). Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India. Food Chemistry, 142, 383–391. https://doi.org/10.1016/j.foodchem.2013.07.066

Nagarajan, S., Jagadish, S. V. K., Prasad, A. S. H., Thomar, A. K., Anand, A., Pal, M., & Agarwal, P. K. (2010). Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agriculture, Ecosystems and Environ-ment, 138(3–4), 274–281. https://doi.org/10.1016/j.agee.2010.05.012

Ocan, D., Rongrong, Z., Odoch, M., Nuwamanya, E., Ibanda, A. P., Odong, T. L., Lamo, J., Fitzgerald, A. M., Daygon, V. D., & Rubaihayo, P. R. (2020). Volatile Organic Com-pound Based Markers for the Aroma Trait of Rice Grain. Journal of Agricultural Sci-ence, 12(8), 92. https://doi.org/10.5539/jas.v12n8p92

Reineccius, G. (2006). Choosing the correct analytical technique in aroma analysis. Flavour in Food, 81–97.

Routray, W., & Rayaguru, K. (2018). 2-Acetyl-1-pyrroline: A key aroma component of aro-matic rice and other food products. Food Reviews International, 34(6), 539–565. https://doi.org/10.1080/87559129.2017.1347672

Schindler, S., Zelena, K., Krings, U., Bez, J., Eisner, P., & Berger, R. G. (2012). Improvement of the Aroma of Pea (Pisum sativum) Protein Extracts by Lactic Acid Fermentation. Food Biotechnology, 26(1), 58–74. https://doi.org/10.1080/08905436.2011.645939

Schwab, W. (2000). Biosynthesis of plants flavors: analysis and biotechnological approach (Risch, S., pp. 72–86). American Chemical Society.

Setyaningsih, W., Majchrzak, T., Dymerski, T., Namie?nik, J., & Palma, M. (2019). Key-marker volatile compounds in aromatic rice (Oryza sativa) grains: An HS-SPME extraction method combined with GC×GC-TOFMS. Molecules, 24(22). https://doi.org/10.3390/molecules24224180

Sunthonvit, N., Srzednicki, G. S., & Craske, J. (2005). Effects of high-temperature drying on the flavor components in Thai fragrant rice. Drying Technology, 23(7), 1407–1418. https://doi.org/10.1081/DRT-200063491

Verma, D. K., & Srivastav, P. P. (2017). Proximate Composition, Mineral Content and Fatty Acids Analyses of Aromatic and Non-Aromatic Indian Rice. Rice Science, 24(1), 21–31. https://doi.org/10.1016/j.rsci.2016.05.005

Wakte, K., Zanan, R., Hinge, V., Khandagale, K., Nadaf, A., & Henry, R. (2017). Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Ory-za sativa L.): a status review. Journal of the Science of Food and Agriculture, 97(2), 384–395. https://doi.org/10.1002/jsfa.7875

Widjaja, R., Craske, J. D., & Wootton, M. (1996). Comparative Studies on Volatile Compo-nents of Scented and Non-Scented Rice. Journal of Food Science and Technology-Mysore, 20(2), 43–47.

Yang, D. S., Shewfelt, R. L., Lee, K. S., & Kays, S. J. (2008). Comparison of odor-active com-pounds from six distinctly different rice flavor types. Journal of Agricultural and Food Chemistry, 56(8), 2780–2787. https://doi.org/10.1021/jf072685t

Yeater, K. M., Duke, S. E., & Riedell, W. E. (2015). Multivariate analysis: Greater insights into complex systems. Agronomy Journal, 107(2), 799–810. https://doi.org/10.2134/agronj14.0017

Yuan, Z. C., Haudecoeur, E., Faure, D., Kerr, K. F., & Nester, E. W. (2008). Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal sali-cylic acid, indole-3-acetic acid and ?-amino butyric acid reveals signalling cross-talk and Agrobacterium-plant co-evolution. Cellular Microbiology, 10(11), 2339–2354. https://doi.org/10.1111/j.1462-5822.2008.01215.x