Efek Temperatur Tinggi Pada Pembentukan Komposit Kalsium Pirofosfat Dengan Penambahan Alumina Dan Zirkonia

Main Article Content

Faisal Akbar

Abstract

Kalsium Pirofosfat (CPP: Ca2P2O7) adalah biomaterial yang berbasis kalsium fosfat yang telah digunakan secara luas dalam bidang medis seperti perbaikan dan penggantian jaringan tulang yang rusak. Secara kimiawi CPP sangat mirip dengan komponen mineral tulang dan gigi manusia. Namun, kekuatan mekanik yang rendah pada material berbahan kalsium fosfat  menjadi masalah yang harus diselesaikan. Tambahan zat penguat berupa ZrO2  dan Al2O3  diperlukan untuk untuk mendapatkan fase matriks dan juga fase penguatan dalam penerapan bioimplant dengan  biokompatibilitas yang superior dan ketahanan oksidasi. Untuk itu dilakukan penambahan ZrO2  dan Al2O3  sebanyak 5% dan 10% pada CPP sintesis dari cangkang kerang. Proses pencampuran komposit dan CPP dilakukan secra mekanokimia menggunkan alat High Energy Milling dengan Ball Powder Ratio (BPR) sebesar 5:1 selama 30 menit kemudian dikalsinasi pada temperatur 1000°C selama 1 jam. Hasil XRD menunjukkan bahwa kalsinasi menyebabkan CPP terurai menjadi CaO dan CaO2 sebelum bereaksi dengan oksida logam dan menghasilkan calcium aluminate dan calcium zirconium oxide. Morfologi yang digambar oleh SEM menunjukkan CPP setelah proses pencampuran dan kalsinasi mengalami penyusutan yang signifikan. Hal tersebut bisa dilihat dari ukuran partikel CPP yaitu sebesar 1,5 ±0,8 µm, tetapi setelah dicampurkan dengan 5% Al2O3 dan proses kalsinasi 1000°C ukuran partikel menjadi 1,087 ± 0,6 µm atau mengecil 27,5% dari ukuran sebelumnya.

Article Details

Section
Articles
Author Biography

Faisal Akbar, Mechanical Engineering Mercu Buana University

R&D Engineer on manufacturing

References

Z. S. Khan, N. B. Ingale, and S. K. Omanwar, “Synyhesis of Thermoluminescence α-Ca_2 P_2 O_7 : Eu^(3+) Bio-nanomaterial,†Materials Letters., vol. 158, pp. 143–146, 2015.

G. Apsana , P. P. George, and N. Devanna, “Facile green synthesis ana characterization of calcium pyrophospate nanoparticles using D-glucose†Materials Today, vol. 4, no. 10, pp. 10913–10920, 2017.

L. M. Grover, Adrian J. Wright, U. Gbureck, A. Bolarinwa, J. Song, Y. Liu, D. F. Farrar, G. Howling, J. Rose and J. E. Barralet, “The effect of amorphous pyrophospate on calcium phosphate cement resorption and bone generation,†Biomaterials., vol. 34, no. 28, pp. 6631–6637, 2013.

A. D. Anastasiou, M. Nerantzaki, A. P. Brown, A. Jha and D. N. Bikiaris, “Drug loading capacity of microporous β-pyrophosphate crystals†Materials & Design, vol. 168, no. 15, pp. 107661, 2019.

K. S. Lee, H. S. Han, Y. C. Kim, J. H. Lo Han, H. Seung, H. S. Lee, J. S. Chang and D. H. Lee., “Evaluation of porous β-calcium pyrophosphatea as bioresorbable bone graft substitute material,†Materials Research Innovations., vol. 19, no. 2, pp. 86–90.

T. V. Safronova et al., “Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics,†Inorg. Mater., vol. 51, no. 11, pp. 1177–1184, 2015.

Y. Su, K. Li, L. Zhang, S. Liu, Y. Yuan, and S. He, “Calcium phosphorus bio-coating on carbon/carbon composites: Preparation, shear strength and bioactivity,†Appl. Surf. Sci., vol. 419, pp. 503–511, 2017.

R.P. Ningsih, N. Wahyuni., “Sintesis Hidroksiapatit dari Cangkang Kerang Kepah (Polymesoda erosa) dengan Variasi Waktu Pengadukan", JKK, vol. 3, no. 1, pp. 22–26, 2014.

F. Akbar, G. Sukmarani, R. Kusumaningrum, A. Noviyanto., “Sintesis Ca_2 P_2 O_7 dari limbah cangkang kerang dengan metode solvothermal,†Jurnal Fisika dan Aplikasinya, vol. 15, no. 3, 2019.

D. J. Veljovic, I. Zalite, E. Palcevskis, I. Smiciklas, R. Petrovic, D. J. Janakovic.,“Microwave sintering of fine grained HAP and HAP/TCP bioceramics†Ceramics International., vol. 36, pp. 595–603, 2010.

J. Kondoh, H. Shiota, K. Kawachi, and T. Nakatani, “Yttria concentration dependence of tensile strength in yttria-stabilized zirconia,†Journal of Alloys and Compounds, vol. 365, pp. 253–258, 2004.

H. Tang, T. Xin, F. Wang.,"Calcium phosphate/titania sol-gel coating on AZ31 magnesium alloy for biomedical application," Inter J. Electrochem, vol. 8, pp. 8115-8125, 2013.

G. He, J. Hu, S. Wei, J. Li, X. Liang, E. Luo “Surface modification of titanium bynano - TiO_2/HA bio ceramic coating" App. Sur. Sci, vol. 255, pp. 442-445, 2008.

B. T. Lee, S. K. Sarkar, A. K. Gain, S. J. Yim, H. Y. Song, “Core/shell volume effect on the micro structure and mechanical properties of fibrous Al_2 O_3-(〖m-ZrO〗_2 )/t-ZrO_2 composites" Mater. Sci. and Eng. A, vol. 432, pp. 317-323, 2006.

A. K. Gain, B. T. Lee., “Micro structure control of continously porous t-ZrO_2 bodied febricated by multipass extrusion process" Mate. Sci. and Eng. A., vol. 419, pp. 269-275, 2006.

B. T. Lee, D. H. Jang, I. T. Kang, C. W. Lee., “Relation between micro structure and mechanical properties of novel fibrous Al_2 O_3-(〖m-ZrO〗_2 )/t-ZrO_2 composites" J. Amer. Cer. Soc., vol. 88, pp. 2874-2878, 2005.

V. A. Kumar, P. R. Raju, N. Ramanaiah, R. Sirilaya., “Effect ZrO_2content on mechanical properties and microstructure of HAp/ZrO_2 nanocomposites" Ceramics International., vol. 44, no. 9, pp. 10345-10351, 2018.

Z. L. Thun, N. Ahmad, A. A. Thant, A. M. Noor., “Characterization of CaO-ZrO_2 reinforced HAp biocomposite for strength and toughness improvement"Procedia Cemistry., vol. 19, pp. 510-516, 2016.