Serat Alam Sebagai Bahan Komposit Ramah Lingkungan, Suatu Kajian Pustaka
Main Article Content
Abstract
Serat alami, sebagai pengganti serat yang direkayasa, telah menjadi salah satu topik yang paling banyak diteliti selama beberapa tahun terakhir. Ini karena sifat-sifat yang melekat, seperti biodegradabilitas, keterbaruan dan ketersediaannya yang melimpah jika dibandingkan dengan serat sintetis. Dari beberapa serat alami terdapat penggolongan serat alami, yaitu serat biji (cotton dan kapok), serat batang (jute, flax, rami, kenaf), dan serat daun (sisal dan abaca). Dari sekian banyak serat alami tersebut, hampir semuanya dapat digunakan sebagai bahan baku industry. Untuk memperoleh hasil komposit serat alami yang optimal, maka sebaiknya serat alami ditenun (bentuk tekstil) untuk memperoleh kekuatan yang tinggi, kerataan dan kestabilan. Pemanfaatan polimer sebagai matrix dapat digunakan polimer sintetik seperti polipropilene, polyester, poliethilene dan lain-lain.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Each author must sign the copyright transfer statement below. The article will not be published unless this form has been signed and received.
References
Daftar Pustaka
. M. J. Mochane, T. C. Mokhena, T. H. Mokhothu, A. Mtibe, E. R. Sadiku, S. S. Ray, I. D. Ibrahim, O. O. Daramola. Recent progress on natural fiber hybrid composites for advanced applications: A review. eXPRESS Polymer Letter Vol.13, No.2, 159-198 (2019). https://doi.org/10.3144/expresspolymlett.2019.15
. Kiruthika A.: A review on physico-mechanical properties of bast fibre reinforced polymer composites. Journal of Building Engineering, 9, 91–99 (2017). https://doi.org/10.1016/j.jobe.2016.12.003
. Ahmad F., Choi H. S., Park M. K.: A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300, 10–24 (2015). https://doi.org/10.1002/mame.201400089
. Saba N., Paridah M. T., Abdan K., Ibrahim N. A.: Dynamic mechanical properties of oil palm nano filler/ kenaf/epoxy hybrid nanocomposites. Construction and Building Materials, 124, 133–138 (2016). https://doi.org/10.1016/j.conbuildmat.2016.07.059
. Gurunathan T., Mohanty S., Nayak S. K.: A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25 (2015). https://doi.org/10.1016/j.compositesa.2015.06.007
. Pickering K. L., Efendy M. G. A., Le T. M.: A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112 (2016). https://doi.org/10.1016/j.compositesa.2015.08.038
. Khan, M. A., Hassan, M. M., and Drzal, L. T. Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute- polycarbonate composite. Compos. Part A Appl. Sci. Manufact. 36, 71–81 (2005). doi: 10.1016/S1359-835X(04)00178-2
. Borba, P. M., Tedesco, A., and Lenz, D. M. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curauá fiber composites. Mater. Res. 17, 412–419 (2013). doi: 10.1590/S1516-14392013005 000203
. Biswas, S., Shahinur, S., Hasan, M., and Ahsan, Q. Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites. Proc. Eng. 105, 933–939 (2015). doi: 10.1016/j.proeng.2015.05.118
. Dixit, S., Goel, R., Dubey, A., Shivhare, P. R., and Bhalavi, T. Natural fibre reinforced polymer composite materials - A review. Polym. Renew. Resour. 8, 71–78 (2017). doi: 10.1177/204124791700800203
. Pickering, K. L., Efendy, M. G. A., and Le, T. M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A. Appl. Sci. Manuf. 83, 98–112 (2016). doi: 10.1016/j.compositesa.2015.08.038
. Arpitha, G. R., and Yogesha, B. Science direct an overview on mechanical property evaluation of natural fiber reinforced polymers. Mater. Today Proc. 4, 2755–2760 (2017). doi: 10.1016/j.matpr.2017.02.153
. Abdellaoui, H., Raji, M., Essabir, H., Bouhfid, R., and el kacem Qaiss, A. “Mechanical behavior of carbon/natural fiber-based hybrid composites,†in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, eds M. Jawaid, M. Thariq, and N. Saba (Woodhead Publishing), 103-122 (2019). doi: 10.1016/B978-0-08-102292-4.00006-0
. Asim, M., Saba, N., Jawaid, M., and Nasir, M. “Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications,†in Sustainable Composites for Aerospace Applications, eds M. Jawaid and M. Thariq (Elsevier Ltd.), 253–268 (2018). doi: 10.1016/B978-0-08-102131-6.00012-8
. Mochane, M. J., Mokhena, T. C., Mokhothu, T. H., Mtibe, A., Sadiku, E. R., Ray, S. S., et al. Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym. Lett. 13, 159–198 (2019). doi: 10.3144/expresspolymlett.2019.15
. Sanjay, M. R., Arpitha, G. R., and Yogesha, B. Study on mechanical properties of natural - glass fibre reinforced polymer hybrid composites : a review. Mater. Today Proc. 2, 2959–2967 (2015). doi: 10.1016/j.matpr.2015. 07.264
. Sanjay, M. R., Arpitha, G. R., Senthamaraikannan, P., Kathiresan, M., Saibalaji, M. A., and Yogesha, B. The hybrid effect of jute/kenaf/e-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J. Nat. Fibers 16, 600–612 (2019). doi: 10.1080/15440478.2018.1431828
. Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., and Yogesha, B. Applications of natural fibers and its composites: an overview. Nat. Resour. 7, 108–114 (2016). doi: 10.4236/nr.2016.73011
. Boopalan, M., Niranjanaa, M., and Umapathy, M. J. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. Part B Eng. 51, 54–57 (2013). doi: 10.1016/j.compositesb.2013.02.033
. Madhu, P., Sanjay, M. R., Senthamaraikannan, P., Pradeep, S., Siengchin, S., Jawaid, M., et al. Effect of various chemical treatments of prosopis juliflora fibers as composite reinforcement: physicochemical, thermal, mechanical, and morphological properties. J. Nat. Fibers 00, 1–12 (2018). doi: 10.1080/15440478.2018.1534191
. Pandey, J. K., Ahn, S. H., Lee, C. S., Mohanty, A. K., and Misra, M. Recent advances in the application of natural fiber based composites. Macro Mater. Eng. 295, 975–989 (2010). doi: 10.1002/mame.201000095
. Komuraiah, A., Kumar, N. S., and Prasad, B. D. Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mat. 50, 359–376 (2014). doi: 10.1007/s11029-014-9422-2
. Gurunathan, T., Mohanty, S., and Nayak, S. K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part Appl. Sci. Manuf. 77, 1–25 (2015). doi: 10.1016/j.compositesa.2015.06.007
. Ian Fulton, Mohamad S. Qatu, Sheldon Shi and S. Lee, “Mechanical Properties of Kenafbased Natural Fiber Compositesâ€, ICCS 16, 1-6, 2011.
. Mather R.R., Wardman R.H. The Chemistry of Textile fibres. Cambridge: RSC Publishing; 2011.
. Mwaikambo L.Y. Review of the history, properties and application of plant fibres. African Journal of Science and Technology, Science and Engineering Series 2006; 7 120–133.
. Blackburn R.S., editor. Biodegradable and sustainable fibres. Cambridge: Woodhead Publishing Series in Textiles: 47, The Textile Institute; 2005.
. Marques G., Rencoret J., Gutiérrez A., RÃo J C. del. Evaluation of the Chemical Composition of Different Non-Woody Plant Fibers Used for Pulp and Paper Manufacturing. The Open Agriculture Journal 2010; 4 93-101.
. Caffall K.H., Mohnen D. The Structure, function, and biosynthesis of plant cell wall pectic polysaccharides.; Carbohydrate Research 2009; 344 1879-1900. Cellulose 2008; 15 (1) 67-74.
. Mather R.R., Wardman R.H. The Chemistry of Textile fibres. Cambridge: RSC Publishing; 2011.
. Elmogahzy, Y., and Farag, R. “Tensile properties of cotton fibers: importance, research, and limitationsâ€, in Handbook of Properties of Textile and Technical Fibres, ed A. R. Bunsell (Woodhead Publishing), 223-273 (2018). doi: 10.1016/B978-0-08-101272-7.00007-9.
. Colomban, P., and Jauzein, V. “Silk: fibers, films, and composites-types, processing, structure, and mechanics,†in Handbook of Properties of Textile and Technical Fibres, ed A. R. Bunsell (Woodhead Publishing), 137-183 (2018). doi: 10.1016/B978-0-08-101272-7.00005-5.
. Zou, Y., Reddy, N., and Yang, Y. Reusing polyester/cotton blend fabrics for composites. Compos. Part B Eng. 42, 763–770 (2011). doi: 10.1016/j.compositesb.2011.01.022.
. Cheung, H., Ho, M., Lau, K., Cardona, F., and Hui, D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 40, 655–663 (2009). doi: 10.1016/j.compositesb.2009.04.014.
. Gupta, M. K., and Srivastava, R. K. Mechanical properties of hybrid fibers-reinforced polymer composite: a review. Polym. Plast. Technol. Eng. 55, 626–642 (2016). doi: 10.1080/03602559.2015.1098694.
. Arumugam, V. A preliminary investigation on Kapok/polypropylene nonwoven composites for sound absorption. Ind. J. Fibre Text. Res. 37, 385–388 (2014). doi: 10.1016/B978-0-12-387736-9.00004-2.
. Wang, H., Memon, H., Hassan, E. A. M., Miah, S., and Ali, A. Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials (Basel) 12:E1226 (2019). doi: 10.3390/ma12081226.
. Dong, T., Xu, G., and Wang, F. Adsorption and adhesiveness of kapok fiber to different oils. J. Hazard. Mater. 296, 101–111 (2015). doi: 10.1016/j.jhazmat.2015.03.040.
. Das, S. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr. Polym. 172, 60–67 (2017). doi: 10.1016/j.carbpol.2017.05.036.
. Rahman, M. S. “Jute-a versatile natural fibre. Cultivation, extraction and processing,†in Industrial Applications of Natural Fibres Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, ed J. Müssig (Wiley), 135–161 (2010). doi: 10.1002/9780470660324.ch6.
. Behera, A. K., Avancha, S., Basak, R. K., Sen, R., and Adhikari, B. Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohydr. Polym. 88, 329–335 (2012). doi: 10.1016/j.carbpol.2011.12.023.
. Bourmaud, A., Siniscalco, D., Foucat, L., Goudenhooft, C., Falourd, X., Pontoire, B., et al. Evolution of flax cell wall ultrastructure and mechanical properties during the retting step. Carbohydr. Polym. 206, 48–56 (2019). doi: 10.1016/j.carbpol.2018.10.065.
. Angelini, L. G., and Tavarini, S. Ramie [Boehmeria nivea (L.) Gaud.] as a potential new fibre crop for the Mediterranean region: growth, crop yield and fibre quality in a long-term field experiment in Central Italy. Ind. Crops Prod. 51, 138–144 (2013). doi: 10.1016/j.indcrop.2013.09.009
. Martin, N., Mouret, N., Davies, P., and Baley, C. Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind. Crops Prod. 49, 755–767 (2013). doi: 10.1016/j.indcrop.2013.06.012
. Réquilé, S., Le Duigou, A., Bourmaud, A., and Baley, C. Peeling experiments for hemp retting characterization targeting biocomposites. Ind. Crops Prod. 123, 573–580 (2018). doi: 10.1016/j.indcrop.2018.07.012.
. Martin, N., Mouret, N., Davies, P., and Baley, C. Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind. Crops Prod. 49, 755–767 (2013). doi: 10.1016/j.indcrop.2013.06.012.
. Raman Bharath, V. R., Vijaya Ramnath, B., and Manoharan, N. Kenaf fibre reinforced composites: a review. ARPN J. Eng. Appl. Sci. 10, 5483–5485 (2015).
. Rehman, M., Gang, D., Liu, Q., Chen, Y., Wang, B., Peng, D., et al. Ramie, a multipurpose crop: potential applications, constraints and improvement strategies. Ind. Crops Prod. 137, 300–307 (2019). doi: 10.1016/j.indcrop.2019.05.029.
. Sen, T., and Jagannatha Reddy, H. N. Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int. J. Innov. Manag. Technol. 2. Sengupta, S., and Basu, G. (2016). Properties of coconut fiber. Ref. Modul. Mater. Sci. Mater. Eng. doi: 10.1016/B978-0-12-803581-8.04122-9.
. Bunsell, A. R. (ed.) “Introduction to the science of fibers,†in Handbook of Properties of Textile and Technical Fibres (Woodhead Publishing), 1–20 (2018). doi: 10.1016/B978-0-08-101272-7.00001-8.
.Hamidon, M. H., Sultan, M. T. H., Ariffin, A. H., and Shah, A. U. M. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. J. Mater. Res. Technol. 8, 3327–3337 (2019). doi: 10.1016/j.jmrt.2019.04.012.
. Saba, N., Paridah, M. T., and Jawaid, M. Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr. Build. Mater. 76, 87–96 (2015). doi: 10.1016/j.conbuildmat.2014.11.043.
. Suharty, N. S., Ismail, H., Diharjo, K., Handayani, D. S., and Firdaus, M. Effect of kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites. Proc. Chem. 19, 253–258 (2016). doi: 10.1016/j.proche.2016.03.102.
. Kipriotis, E., Heping, X., Vafeiadakis, T., Kiprioti, M., and Alexopoulou, E. Ramie and kenaf as feed crops. Ind. Crops Prod. 68, 126–130 (2015). doi: 10.1016/j.indcrop.2014.10.002.
. Laftah, W. A., and Abdul Rahaman, W. A. W. Chemical pulping of waste pineapple leaves fiber for kraft paper production. J. Mater. Res. Technol. 4, 254–261 (2015). doi: 10.1016/j.jmrt.2014.12.006.
. Reddy, N., and Yang, Y. “Bacterial cellulose fibers,†in Innovative Biofibers from Renewable Resources (Berlin; Heidelberg: Springer), 307-329 (2015). doi: 10.1007/978-3-662-45136-6_61.
. Naveen, J., Jawaid, M., Amuthakkannan, P., and Chandrasekar, M. “Mechanical and physical properties of sisal and hybrid sisal fiber- reinforced polymer composites,†in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, eds M. Jawaid, M. Thariq, and N. Saba (Woodhead Publishing), 427-440 (2018). doi: 10.1016/B978-0-08-102292-4.00021-7.
. Mihai, M. Novel polylactide/triticale straw biocomposites : processing, formulation, and properties. Polym. Eng. Sci. 54 (2013). doi: 10.1002/pen.23575.
. Borba, P. M., Tedesco, A., and Lenz, D. M. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curauá fiber composites. Mater. Res. 17, 412–419 (2013). doi: 10.1590/S1516-14392013005 000203.
. Zakikhani, P., Zahari, R., Sultan, M. T. H., and Majid, D. L. Extraction and preparation of bamboo fibre-reinforced composites. Mater. Des. 63, 820–828 (2014). doi: 10.1016/j.matdes.2014.06.058.
. Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., and Yogesha, B. Applications of natural fibers and its composites: an overview. Nat. Resour. 7, 108–114 (2016). doi: 10.4236/nr.2016.73011.
. Puttegowda, M., Rangappa, S. M., Jawaid, M., Shivanna, P., Basavegowda, Y., and Saba,N. “Potential of natural/synthetic hybrid composites for aerospace,in applications,†in Sustainable Composites for Aerospace Applications, eds M. Jawaid and M. Thariq (Woodhead Publishing), 315-351 (2018). doi: 10.1016/B978-0-08-102131-6.00021-9.
. Akin, D. E. “Chemistry of plant fibres,†in Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, ed J. Müssing (West Sussex: John Wiley & Sons Ltd.), 13–22 (2010).
. Islam M. R., Beg M. D., Gupta A.: Characterization of laccase-treated kenaf fibre reinforced recycled poly- propylene composites. BioResources, 8, 3753–3770 (2013).
. Edhirej A., Sapuan S. M., Jawaid M., Zahari N. I.: Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules, 101, 75–83 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.045.
. Maslinda A. B., Majid M. S. A., Ridzuan M. J. M., Afendi M., Gibson A. G.: Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Composite Structures, 167, 227–237 (2017). https://doi.org/10.1016/j.compstruct.2017.02.023.
. Fragassa C., Pavlovic A., Santulli C.: Mechanical and impact characterisation of flax and basalt fibre vinyl-ester composites and their hybrids. Composites Part B: Engineering, 137, 247–259 (2018). https://doi.org/10.1016/j.compositesb.2017.01.004.
. Todor MP, Bulei C and Kiss I. Inducing the Biodegradability of Polymeric Composite Materials using Bioranforts, Applied Engineering Letters 2(2) 84-90 (2017).
. Todor MP, Bulei C, Heput T and Kiss I. Researches on the Development of New Composite Materials Complete/Partially Biodegradable using Natural Textile Fibers of New Vegetable Origin and Those Recovered from Textile Waste, IOP Conference Series: Materials Science & Engineering 294 012021 (2018).
. Pickering K L, Aruan Efendy M G and Le T M. A Review of Recent Developments in Natural Fiber Composites and Their Mechanical Performance, Composites Part A: Applied Science and Manufacturing 83 98-112 (2016).
. Cheung H, Ho M, Lau K, Cardona F and Hui D. Natural Fiber–Reinforced Composites for Bioengineering and Environmental Engineering Applications, Composites Part B 40 655-663 (2009).
. B. Gu and X. Ding. A Refined Quasi-microstructure Model for Finite Element Analysis of Three-dimensional Braided Composites Under Ballistic Penetration, Journal of Composite Materials, 39, pp. 685-710 (2005).
. Yan Li, M. S. Sreekala dan Maya JACOB. Textile Composites Based On Natural Fibers. Chapter 8, 202-243.
. S. K. Pandita, D. Falconet and I. Verpoest. Impact properties of weft knitted fabric reinforced composites, Composites Science and Technology, 62, pp.1113-1123 (2002).
. M P Todor, C Bulei and I Kiss. Composite materials manufacturing using textile inserts with natural origins fibres. IOP Conf. Series: Materials Science and Engineering 393 (2018) 012088 doi:10.1088/1757-899X/393/1/012088.