UTILIZATION OF ARTIFICIAL INTELLIGENCE TO IMPROVE FLOOD DISASTER MITIGATION
Main Article Content
Abstract
Article Details
References
Arinta, R.R. dan E. Andi W.R. 2019. Natural Disaster Application on Big Data and Machine Learning: A Review. Proceeding. The 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE) Yogyakarta, Indonesia. 249 – 254.
BNPB. 2020. Data Bencana Indonesia. Badan Nasional Penanggulangan Bencana [terhubung berkala]. https://bnpb.cloud/dibi/ [6 April 2020].
BPPT. 2018. Kongres Teknologi Nasional (KTN) 2018. Badan Pengkajian dan Penerapan Teknologi. [terhubung berkala]. http://ktn.bppt.go.id/ktn2018/ [20 April 2020].
Bui, D.T., K. Khosravi, S. Li, H. Shahabi, M. Panahi, V. P. Singh, K. Chapi, A. Shirzadi, S. Panahi, W. Chen dan B Bin Ahmad. 2018. New Hybrids of ANFIS with Several Optimization Alghorithms for Flood Susceptibility Modeling. Water. 10 (1210): 1-28.
Chang, L., M. Amin, S-N. Yang dan F-J Chang. 2018. Building ANN-Based Regional Multi-Step-Ahead Inundation Forecast Model. Water. 10(1283): 1-18.
ESCAP. 2015. United Nations. Disasters in Asia and the Paciï¬c: 2015 Year in Review. Available online. [terhubung berkala]. https://www.unescap.org/sites/default/ï¬les/2015_Year%20in%20Review_ï¬nal_PDF_1.pdf [15 April 2020].
Darabi, H., B. Choubin., O. Rahmati, A. T. Haghighi, B. Pradhan dan B. Kløve. 2019. Urban Flood Risk Mapping Using the GARP and QUEST Models: A Comparative Study of Machine Learning Techniques. Journal of Hydrology. 569: 142-154.
Fitriyaningsih, I., Y. Basani dan L.M. Ginting. 2018. Web-Based Application Development for Predicting Rainfall, Water Discharge, and Flood Using Machine Learning Method in Deli Serdang, Jurnal Penelitian Komunikasi dan Opini Publik. 22 (2):132-143.
Fujitsu. 2019. Japan: Fujitsu develops AI disaster mitigation technology to predict river flooding with limited data. [terhubung berkala]. https://www.preventionweb.net/ news/ view/67241 [10 April 2020].
Ghaffarian, S., N. Kerle, E. Pasolli dan J.J. Arsanjani. 2019. Post-Disaster Building Database Updating Using Automated Deep Learning: An Integration of Pre-Disaster OpenStreetMap and Multi-Temporal Satellite Data. Remote Sensing. 11 (2427): 1-20.
Kompas. 2018. Penanganan Bencana di Indonesia Masih Jadi Beban APBN. [terhubung berkala]. https://ekonomi. kompas.com/read/2018/10/10/154635126/ penanganan-bencana-di-indonesia-masih-jadi-beban-apbn [12 April 2020].
Mosavi, A., P. Ozturk dan K. Chau. 2018. Flood Prediction Using Machine Learning Models: Literature Review. Water. 10 (1536): 1-40.
Prawiradisastra, F. 2017. Development of Flood Prediction Model Using Adaptive Neuro Fuzzy Inference System (ANFIS) for Ciliwung River. Thesis. IPB University.
Republik Indonesia. 2007. Undang Undang Republik Indonesia Nomor 24 Tahun 2007 tentang Penanggulangan Bencana. [terhubung berkala]. https: //bnpb.go.id/ppid/file/UU_24_2007.pdf [17 April 2020].
Robertson, B.W., M. Johnson, D. Murthy, W.R. Smith dan K. K. Stephens. 2019. Using a Combination of Human Insight and ‘Deep Learning for Real-Time Disaster Communication. Progress in Disaster Science. 2: 1-11.
Sanubari, A.R. 2018. Pemodelan Prediksi Banjir Menggunakan Artificial Neural Network. Skripsi S1. Prodi Sistem Komputer. Fakultas Teknik Elektro. Universitas Telkom.
Moon, S-H., Y-H. Kim, Y.H. Lee, B-R. Moon. 2019. Application of Machine Learning to An Early Warning System for Very Short-Term Heavy Rainfall. Journal of Hydrology 568: 1042-1054.
Shyekhmousa, M., N. Kerle, M. Kuffer dan S. Ghaffarian. 2019. Post-Disaster Recovery Assessment with Machine Learning-Derived Land Cover and Land Use Information. Remote Sensing. 11 (10): 1174.
Soebroto, A.A., I. Cholissodin, R.C. Wihandika, M.T. Frestiyanti dan Z.E. Arif. 2015. Prediksi Tinggi Muka Air (TMA) untuk Deteksi Dini Bencana Banjir Menggunakan SVR-TVIWPSO. Jurnal Teknologi Informasi dan Ilmu Komputer. 2 (2): 79-86.
Wagenaar, D., A. Curran, M. Balbi, A. Bhardwaj, R. Soden, E. Hartato, G.M. Sarica, L. Ruangpan, G. Molinario dan D. Lallemant. 2020. Invited Perspectives: How Machine Learning Will Change Flood Risk and Impact Assessment. Natural Hazard Earth System Sciences. 20: 1149–1161.
Zahra, K., M. Imran dan F.O. Ostermann. 2020. Automatic Identification of Eyewitness Messages on Twitter During Disasters. Information Processing and Management. 57(102107).