Main Article Content

Ardhi Adhary Arbain



Klimatologi badai petir (TS) dianalisis dengan memanfaatkan pengamatan SYNOP per 3-jam dari 8 stasiun cuaca BMKG yang berada di wilayah Jakarta dan sekitarnya selama periode tahun 2000-2012. Frekuensi kejadian TS pada tiap lokasi dihitung berdasarkan perbandingan antara jumlah laporan TS pada data SYNOP dengan jumlah total observasi yang dilakukan oleh stasiun yang bersangkutan. Hasil pengolahan data menunjukkan bahwa TS memiliki dua pola klimatologi yang dominan dan paling sering terjadi pada periode sebelum dan sesudah musim hujan, terutama pada bulan November dan April. Hasil analisis juga menunjukkan bahwa TS sangat bergantung pada topografi dari lokasi yang bersangkutan, yang mengindikasikan pengaruh kuat dari siklus harian akibat konveksi kuat dan pola angin darat-laut di wilayah Jakarta dan sekitarnya. Pada beberapa lokasi yang berdekatan dengan Teluk Jakarta, periode puncak kejadian TS juga terjadi pada puncak musim hujan akibat pengaruh dari monsun barat laut dan seruak dingin yang datang dari Laut Tiongkok Selatan. Variabilitas iklim global seperti ENSO (El Nino Southern Oscillation) dan MJO (Madden-Julian Oscillation) turut memberikan pengaruh signifikan terhadap frekuensi TS. Hasil analisis menunjukkan bahwa frekuensi TS mengalami peningkatan pada periode La Nina kuat, serta pada periode sebelum dan sesudah MJO melintasi Indonesia bagian barat.




Thunderstorm (TS) climatology was analyzed by utilizing 3-hourly SYNOP observation of 8 BMKG’s weather stations in Jakarta capital and surrounding area during the period of 2000-2012. The frequency of TS occurrences at each location was calculated based on the ratio of TS reports to the total number of SYNOP observations conducted by the stations. The results show that the TS has two dominant climatological patterns in which most cases, the peak periods both preced and succeed the rainy season, especially in November and April. The results also imply that TS occurences are heavily influenced by the topography at each location, which indicate the great dependency of TS to the diurnal cycle generated by strong convective activity and land-sea breeze circulation over Jakarta and surronding regions. On the other hand, the peak period of TS at some locations close to Jakarta Bay, occurs simultaneously with the peak of rainy season by the influence of north-westerly monsoon and cold surge coming from the South China Sea. Global climate variabilities such as ENSO (El Nino Southern Oscillation) and MJO (Madden-Julian Oscillation) also significantly contribute to the anomaly of TS frequency. The results show an enhancement of TS frequency during the period of strong La Nina, as well as the period before and after MJO passes the western part of Indonesia.


Article Details

Author Biography

Ardhi Adhary Arbain, 1. Agency for the Assessment and Application of Technology (BPPT) 2. Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Japan

National Laboratory for Weather Modification Technology BPPT


Chang, C.P., Wang, Z., McBride, J., Liu, C.H. (2005). Annual Cycle of Southeast Asia–Maritime Continent Rainfall and the Asymetric Monsoon Transition. Journal of Climate, 18(2), 287-301. doi: 10.1175/JCLI-3257.1

Christian, H.J., Blakeslee, R.J., Boccippio, D.J., Boeck, W.L., Buechler, D.E., Driscoll, K.T., Goodman, S.J., Hall, J.M., Koshak, W.J., Mach, D.M., Stewart, M.F. (2003). Global Frequency and Distribution of Lightning as Observed from Space by the Optical Transient Detector. Journal of Geophysical Research, 108(D1), ACL4-1 - ACL4-15. doi: 10.1029/2002JD002347

Hattori, M., Mori, S., Matsumoto, J. (2011). The Cross-Equatorial Northerly Surge over the Maritime Continent and Its Relationship to Precipitation Patterns. Journal of the Meteorological Society of Japan, 89A, 27-47. doi: 10.2151/jmsj.2011-A02

Keenan, T., May, P., Holland, G., Rutledge, S., Carbone, R., Wilson, J., Moncrieff, M., Crook, A., Takahashi, T., Tapper, N., Platt, M., Hacker, J., Sekelsky, S., Saito, K., Gage, K. (2000). The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and Some Results. Bulletin of the American Meteorological Society, 81(10), 2433-2455. doi: 10.1175/1520-0477(2000)081<2433:TMCTEM>2.3.CO;2

Mori, S., Hamada, J-i., Tauhid, Y.I., Yamanaka, M.D., Okamoto, N., Murata, F., Sakurai, N., Hashiguchi, H., Sribimawati, T. (2004). Diurnal Land-Sea Rainfall Peak Migration over Sumatera Island, Indonesian Maritime Continent, Observed by TRMM Satellite and Intensive Rawinsonde Soundings, Monthly Weather Review, 132(8), 2021-2039. doi: 10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2

Mori, S., Hamada, J-I., Sakurai, N., Fudeyasu, H., Kawashima, M., Hashiguchi, H., Syamsudin, F., Arbain, A.A., Sulistyowati, R., Matsumoto, J., Yamanaka, M.D. (2011). Convective System Developed along the Coastline of Sumatera Island, Indonesia, Observed with an X-Band Doppler Radar During the HARIMAU2006 Campaign. Journal of the Meteorological Society of Japan, 89A, 61-81. doi: 10.2151/jmsj.2011-A04

Morita, J., Takayabu, Y.N., Shige, S., Kodama, Y. (2006). Analysis of Rainfall Characteristics of the Madden-Julian Oscillation Using TRMM Satellite Data. Dynamics of Atmospheres Oceans, 42, 107-126. doi: 10.1016/j.dynatmoce.2006.02.002

Neale, R., Slingo, J. (2003). The Maritime Continent and Its Role in the Global Climate: A GCM Study. Journal of Climate, 16(5), 834-848. doi: 10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2

Ramage, C.S. (1968). Role of A Tropical “Maritime Continent†in the Atmospheric Circulation. Monthly Weather Review, 96(6), 365-370. doi: 10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2

Renggono, F., Hashiguchi, H., Fukao, S., Yamanaka, M.D, Ogino, S-Y., Okamoto, N., Murata, F., Sitorus, B.P., Kudsy, M., Kartasasmita, M., Ibrahim, G. (2001). Precipitating Clouds Observed by 1.3-Ghz Boundary Layer Radars in Equatorial Indonesia. Annales Geophysicae, 19(8), 889-897.

Rodger, C.J., Werner, S., Brundell, J.B., Lay, E.H., Thomson, N.R., Holzworth, R.H., Dowden, R.L. (2006). Detection Efficiency of The VLF World-Wide Lightning Location Network (WWLLN): Initial Case Study. Annales Geophysicae, 24(12), 3197-3124.

Sakurai, N., Murata, F., Yamanaka, M.D., Mori, S., Hamada, J-I., Hashiguchi, H., Tauhid, Y.I., Sribimawati, T., Suhardi, B. (2005). Diurnal Cycle of Cloud System Migration over Sumatera Island. Journal of the Meteorological Society of Japan, 83, 835-850. doi: 10.2151/jmsj.83.835

Sakurai, N., Kawashima, M., Fujiyoshi, Y., Hashiguchi, H., Shimomai, T., Mori, S., Hamada, J-I., Murata, F., Yamanaka, M.D., Tauhid, Y.I., Sribimawati, T., Suhardi, B. (2009). Internal Structures of Migratory Cloud Systems with Diurnal Cycle over Sumatera Island During CPEA-I Campaign. Journal of the Meteorological Society of Japan, 87, 157-170. doi: 10.2151/jmsj.87.157

Schumann, U., Huntrieser, H. (2007). The Global Lightning Induced Nitrogen Oxides Source. Atmospherics Chemistry and Physics, 7(14), 3823-3907. doi: 10.5194/acp-7-3823-2007

Takayabu, Y.N. (2006). Rain-Yield per Flash Calculated from TRMM PR and LIS Data and Its Relationship to The Contribution of Tall Convective Rain. Geophysical Research Letters, 33(18), L18705. doi: 10.1029/2006GL027531

Virts, K. S., Wallace, J.M., Hutchins, M.L., Holzworth, R.H. (2013). Diurnal Lightning Variability over the Maritime Continent: Impact of Low-Level Winds, Cloudiness and the MJO. Journal of the Atmospheric Sciences, 70(10), 3128-3146. doi: 10.1175/JAS-D-13-021.1

Wu, P., Hara, M., Fudeyasu, H., Yamanaka, M.D, Matsumoto, J.,Syamsudin, F., Sulistyowati R., Djajadihardja, Y.S. (2007). The Impact of Trans-equatorial Monsoon Flow on the Formation of Repeated Torrential Rains over Java Island. SOLA, 3, 93-96. doi: 10.2151/sola.2007-024

Wu, P., Arbain, A.A, Mori, S., Hamada, J-i., Hattori, M., Syamsudin, F., Yamanaka, M.D. (2013). The Effects of an Active Phase of the Madden-Julian Oscillation on the Extreme Precipitation Event over Western Java Island in January 2013. SOLA, 9, 79-83. doi: 10.2151/sola.2013-018