UJI PERFORMA WRF DENGAN DATA ASIMILASI RADAR, SATELIT DAN SYNOP UNTUK PREDIKSI HUJAN DI JAKARTA
Main Article Content
Abstract
Asimilasi data merupakan suatu metode estimasi yang diperoleh dari penggabungan antara output model NWP dan data-data pengukuran. Dalam beberapa tahun terakhir, model mesoscale resolusi tinggi diinisialisasi dengan menggunakan teknik data asimilasi (3DVAR/4DVAR) yang diterapkan untuk mempelajari fenomena meteorologi. Penelitian ini dilakukan di wilayah Jakarta dengan memanfaatkan data observasi sinoptik, data radiance satelit dan data radar Doppler C-Band EEC (Enterprise Electronics Corporation) di Jakarta. Penelitian ini menggunakan model numerik Weather Research and Forecasting (WRF) untuk menjalankan model tanpa asimilasi dan model dengan asimilasi data radar, satelit dan sinoptik menggunakan sistem 3DVAR. Analisis dilakukan secara kuantitatif untuk menguji performa model terhadap data observasi dan analisis spasial dengan mencari nilai selisih curah hujan dengan data GSMaP melalui metode overlay. Hasil membuktikan performa terbaik dari hasil prediksi distribusi hujan spasial adalah model asimilasi satelit kemudian model asimilasi radar dan terakhir model asimilasi synoptic. Uji performa melalui tabel kontingensi untuk mengetahui nilai PC, TS, FAR, dan POD. Model asimilasi satelit memiliki performa paling baik daripada model asimilasi lain. Untuk prediksi sesuai kategori hujan ringan model asimilasi satelit yang terbaik, sementara untuk kategori hujan sangat lebat model asimilasi synop adalah yang paling unggul.
Article Details
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d). Each author must sign the copyright transfer statement. The article will not be published unless this form has been signed and received.
OPEN ACCESS POLICY
Jurnal Sains & Teknologi Modifikasi Cuaca provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JSTMC by BBTMC-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JSTMC
References
Auligne, T., et al. (2009). Satellite Data Assimilation in WRF-Var. UCAR.
Dash, S.K., Sahu, D.K., Sahu, S.C. (2013). Impact of AWS Observation in WRF-DVAR Data Assimilation System: a Case Study on Abnormal Warming Condition in Odisha. Nethazard, 65, 767-798.
Gustari, I. (2014). Perbaikan Prediksi Cuaca Numerik Kejadian Hujan Sangat Lebat Terkait dengan Sistem Awan di Jabodetabek Menggunakan Asimilasi Data Radar C-Band. Disertasi. Institut Teknologi Bandung.
Gustari, I., Hadi, T.W., Hadi, S., Renggono, F. (2012). Akurasi Prediksi Curah Hujan Harian Operasional di Jabodetabek: Perbandingan dengan Model WRF. Jurnal Meteorologi dan Geofisika, Vol.13(2), 119-130.
Hadi, T.W., et al. (2011). Pelatihan Model WRF (Weather Research and Forecasting). Laboratorium Analisis Meteorologi (Weather and Research Prediction Laboratory) Fakultas Ilmu dan Teknologi Kebumian ITB, Bandung.
Harper, K., Uccellini, L.W., Kalnay, E., Carey, K., Morone, L. (2007). 50th Anniversary of Operational Numerical Weather Prediction. Bulletin of American Meteorological Society 88(5), 639–650. doi: 10.1175/BAMS-88-5-639
Holton, J.R. (2004). An Introduction to Dynamic Meteorology Third Edition. California: Academis Press Inc. San Diego, California: Elsevier Academic Press.
Kalnay, E. (2003). Atmospheric Modelling, Data Assimilation and Predictability. Cambridge, UK: Cambridge University Press.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2015: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. [Available online at https://doi.org/10.5065/D65D8PWK.]
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2004: NCEP ADP Global Surface Observational Weather Data, October 1999 - continuing. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. [Available online at http://rda.ucar.edu/datasets/ds461.0/.]
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2009: NCEP GDAS Satellite Data 2004-continuing. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. [Available online at http://rda.ucar.edu/datasets/ds735.0/.]
Paski, J.A.I., Permana, Y.H., Pertiwi, D.A.S. (2017). Analisis Sebaran Petir Cloud to Ground (CG) di Wilayah Jabodetabek pada Tahun 2016. Prosiding Seminar Nasional Fisika (E-Journal SNF 2017) Vol. 6. EPA, 65-72.
Paski, J.A.I. (2017). Pengaruh Asimilasi Data Radar C-Band dalam Prediksi Cuaca Numerik (Studi Kasus di Lampung). Jurnal Meteorologi dan Geofisika, Vol.18(2), 55-64.
Paski, J.A.I. (2017). Pengaruh Asimilasi Data Penginderaan Jauh (Radar dan Satelit) pada Prediksi Cuaca Numerik Untuk Estimasi Curah Hujan. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, Vol.14(2), 79-88.
Sahu, D.K., Dash, S.K., Bhan, S.C. (2014). Impact of Surface Observations on Simulation of Rainfall over NCR Delhi Using Regional Background Error Statistic in WRF-3DVAR Model. Meterology and Atmospheric Physics, Vol.125(1-2), 17-42.
Satrya, L.I. (2012). Asimilasi Data Radar dalam Penerapan Prediksi Cuaca Numerik di Indonesia (Studi Kasus di Jawa Barat). Meteorologi ITB: Bandung.
Sun, J., Crook, N.A. (1997). Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. Journal of the Atmospheric Sciences, Vol.54(12), 1642–1661. doi: 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
Sun, J., Wang, H. (2013). Radar Data Assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a Squall Line over the U.S. Great Plains. Monthly Weather Review, 141(7), 2245-2264. doi: 10.1175/MWR-D-12-00169.1.
Talagrand, O. (1997). Assimilation of Observation, an Introduction (gtSpecial IssueltData Assimilation in Meteorology and Oceanography: Theory and Practice). Journal of the Meteorological Society of Japan, Vol.75(1B), 191-209. doi: 10.2151/jmsj1965.75.1B_191.
Yang, J., Duan, K., Wu, J., Qin, X., Shi, P., Liu, H., Xie, X., Zhang, X., Sun, J. (2015). Effect of Data Assimilation Using WRF-3DVAR for Heavy Rain Prediction on the Northeastern Edge of the Tibetan Plateau. Hindawi: Advances in Meteorology Volume 2015. doi: 10.1155/2015/294589.