EFFECT OF AEROSOL RADIATION INTERACTION (ARI) FROM INCREASING LAND AND FOREST FIRES ON CLOUD FORMATION IN OGAN KOMERING ILIR (SOUTH SUMATRA)

Main Article Content

Rini Mariana Sibarani
Rahmat Hidayat
Muh. Taufik
Edvin Aldrian

Abstract

Intisari


Peningkatan aerosol dapat berpengaruh secara langsung terhadap pertumbuhan awan yang dikenal sebagai efek Aerosol Radiation Interaction (ARI). Hal ini berhubungan dengan sifat penyerapan dan penghamburan radiasi matahari dan menyebabkan terjadinya pengurangan radiasi matahari ke permukaan sebagai sumber energi pada proses pembentukan awan secara konvektif. Efek ARI ini dapat dilihat dari parameter Aerosol Radiative Forcing (ARF). ARF bernilai negatif berarti terjadi pengurangan radiasi, sedangkan bernilai positif berarti terjadi peningkatan radiasi. Meningkatnya kebakaran hutan dan lahan di Kab. Ogan Komering Ilir (Sumatera Selatan) dari Agustus hingga November 2019 menyebabkan peningkatan konsentrasi aerosol, yang ditunjukkan dengan peningkatan nilai Aerosol Optical Thickness (AOT) berkisar dari 1 menjadi 2. Hal ini ditandai dengan peningkatan AOT Komponen kimia Karbon Organik (OC) berkisar antara 0,3 – 1,2 dan Karbon Hitam (BC) berkisar antara 0,1 – 0,35.  Tulisan ini akan membahas efek ARI dengan menggunakan data reanalysis dari Modern-Era Retrospective analysis for Research and Applications II (MERRA-2) dan ERA5 untuk kasus kebakaran hutan di Kab Ogan Komering. Hasil analisis dari data tersebut menunjukkan adanya efek ARI yang ditunjukkan dari nilai negatif pada ARF radiasi gelombang pendek di permukaan (SFC) dan di puncak atmosfer (TOA), nilai positif pada ARF radiasi gelombang panjang di SFC dan nilai negative ARF radiasi gelombang panjang di TOA. Efek ARI terhadap pembentukan awan juga dibuktikan dengan adanya pengurangan tutupan awan rendah (lcc) serta meningkatnya nilai Convective Inhibition (CIN).


Abstract 


The aerosols increase can directly affect cloud formation, known as the Aerosol Radiation Interaction (ARI) effect, related to the nature of absorption and scattering of solar radiation and causes a reduction in solar radiation to the surface as an energy source in the process of convective cloud formation. This ARI effect can be seen from the Aerosol Radiative Forcing (ARF) parameter. A negative ARF value means a reduction in radiation, while a positive value represents an increase in radiation. The increased land and forest fires in the Kab. Ogan Komering Ilir (South Sumatra) from August to November 2019 led to an increase in aerosol concentrations, which was indicated by an increase in Aerosol Optical Thickness (AOT) values ??ranging from 1 to 2. It is characterized by an increase in AOT Organic Carbon (OC) chemical components ranging from 0.3 – 1.2 and Black Carbon (BC) ranging from 0.1 – 0.35. This paper will discuss the effect of ARI using reanalysis data from Modern-Era Retrospective analysis for Research and Applications II (MERRA-2) and ERA5 for the case of forest fires in the Ogan Komering District. The results of the study show that there is an ARI effect, characterized by a negative value on the ARF of shortwave radiation at the surface (SFC) and the top of the atmosphere (TOA), a positive value on the ARF of longwave radiation at the SFC, and a negative value of ARF of longwave radiation in the TOA. The effect of ARI on cloud formation is also evidenced by a reduction in low cloud cover (lcc) and an increase in the value of Convective Inhibition (CIN).

Article Details

Section
Articles

References

Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ. (2000). Reduction of tropical cloudiness by soot. Science (80- ). 288(5468):1042–1047. doi:10.1126/science.288.5468.1042.

Adiningsih ES, Indrajat A, Salyasari ND. (2015). Analysis on the Quality of Aerosol Optical Thickness Data Derived From Npp Viirs and Aqua Modis Over Western Region of Indonesia. Int J Remote Sens Earth Sci. 12(2):135. doi:10.30536/j.ijreses.2015.v12.a2707.

Albrecht BA. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science (80- ). 245(4923):1227–1230. doi:10.1126/science.245.4923.1227.

Aldabash M, Balcik FB, Glantz P. (2020). Validation of MODIS C6.1 and MERRA-2 AOD using AERONET observations: A comparative study over Turkey. Atmosphere (Basel). 11(9). doi:10.3390/ATMOS11090905.

Badan Restorasi Gambut. (2019). Rencana Restorasi Ekosistem Gambut Provinsi Sumatera Selatan tahun 2018-2023. :1–172.

Bayong TH. 2007. Proses Fisis – Dinamis awan dan Modifikasinya.

Che H, Gui K, Xia X, Wang Y, Holben BN, Goloub P, Cuevas-Agulló E, Wang H, Zheng Y, Zhao H, et al. (2019). Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos Chem Phys. 19(16):10497–10523. doi:10.5194/acp-19-10497-2019.

Che H, Zhang XY, Xia X, Goloub P, Holben B, Zhao H, Wang Y, Zhang XC, Wang H, Blarel L, et al. (2015). Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002-2013. Atmos Chem Phys. 15(13):7619–7652. doi:10.5194/acp-15-7619-2015.

Ding AJ, Fu CB, Yang XQ, Sun JN, Petäjä T, Kerminen VM, Wang T, Xie Y, Herrmann E, Zheng LF, et al. (2013). Intense atmospheric pollution modifies weather: A case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos Chem Phys. 13(20):10545–10554. doi:10.5194/acp-13-10545-2013.

Eck TF, Holben BN, Giles DM, Slutsker I, Sinyuk A, Schafer JS, Smirnov A, Sorokin M, Reid JS, Sayer AM, et al. (2019). AERONET Remotely Sensed Measurements and Retrievals of Biomass Burning Aerosol Optical Properties During the 2015 Indonesian Burning Season. J Geophys Res Atmos. 124(8):4722–4740. doi:10.1029/2018JD030182.

Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA, Darmenov A, Bosilovich MG, Reichle R, et al. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim. 30(14):5419–5454. doi:10.1175/JCLI-D-16-0758.1.

Hatzianastassiou N, Matsoukas C, Drakakis E, Stackhouse PW, Koepke P, Fotiadi A, Pavlakis KG, Vardavas I. (2007). The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS). Atmos Chem Phys. 7(10):2585–2599. doi:10.5194/acp-7-2585-2007.

Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, et al. (1998). AERONET - A federated instrument network and data archive for aerosol characterization. Remote Sens Environ. 66(1):1–16. doi:10.1016/S0034-4257(98)00031-5.

Huang J, Minnis P, Lin B, Wang T, Yi Y, Hu Y, Sun-Mack S, Ayers K. (2006). Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys Res Lett. 33(6). doi:10.1029/2005GL024724.

IPCC IP on CC. 2013. Climate Change (2013): The Physical Science Basis, the Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al.

Kusumaningtyas SDA. (2020). Aerosol Optical Depth (Aod) Over Four Indonesian Cities From the Aeronet Measurement: an Overview. J Sains Teknol Modif Cuaca. 20(2):47–57. doi:10.29122/jstmc.v20i2.3894.

Kusumaningtyas SDA, Aldrian E, Rahman MA, Sopaheluwakan A. (2016). Aerosol properties in central Kalimantan due to Peatland fire. Aerosol Air Qual Res. 16(11):2757–2767. doi:10.4209/aaqr.2015.07.0451.

Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, Wang T, Xue H, Zhang H, Zhu B. (2017). Aerosol and boundary-layer interactions and impact on air quality. Natl Sci Rev. 4(6):810–833. doi:10.1093/nsr/nwx117.

Li Z, Lau WKM, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian Y, Li J, Zhou T, et al. (2016). Aerosol and monsoon climate interactions over Asia. Rev Geophys. 54(4):866–929. doi:10.1002/2015RG000500.

Liu Y, Jia R, Dai T, Xie Y, Shi G. (2014). A review of aerosol optical properties and radiative effects. J Meteorol Res. 28(6):1003–1028. doi:10.1007/s13351-014-4045-z.

Ostrenga D. (2010). README Document for MERRA Data Products. Changes.:55.

Ou Y, Li Z, Chen C, Zhang Y, Li K, Shi Z, Dong J, Xu H, Peng Z, Xie Y, et al. (2022). Evaluation of MERRA?2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data. Remote Sens. 14(4). doi:10.3390/rs14040821.

Pöschl U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angew Chemie - Int Ed. 44(46):7520–7540. doi:10.1002/anie.200501122.

Prasad AK, Singh RP. (2007). Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000-2005). Remote Sens Environ. 107(1–2):109–119. doi:10.1016/j.rse.2006.09.026.

Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D. (2001). Atmosphere: Aerosols, climate, and the hydrological cycle. Science (80- ). 294(5549):2119–2124. doi:10.1126/science.1064034.

Randles CA, da Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R, Smirnov A, Holben B, Ferrare R, Hair J, et al. (2017). The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J Clim. 30(17):6823–6850. doi:10.1175/JCLI-D-16-0609.1.

Reid JS, Eck TF, Christopher SA, Koppman R, Dubovik O, Eleuterio DP, Holben BN, Reid EA, Zhang J. (2005). A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos Chem Phys. 5(3):827–849. doi:10.5194/acp-5-827-2005.

Rizza U, Mancinelli E, Morichetti M, Passerini G, Virgili S. (2019). Aerosol optical depth of the main aerosol species over italian cities based on the NASA/MERRA-2 model reanalysis. Atmosphere (Basel). 10(11). doi:10.3390/atmos10110709.

Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO. (2008). Flood or drought: How do aerosols affect precipitation? Science (80- ). 321(5894):1309–1313. doi:10.1126/science.1160606.

Rosida, Susanti I. (2016). Pengaruh Aerosol Terhadap Fluks Radiasi Neto Dan Berdasar Data Satelit ( the Influence of Aerosol on the Net Radiation Flux and Radiative Forcing At the Top of Atmosphere and Surface Based on Satellite Data ). J Sains Dirgant. 14(1):27–42.

Satheesh S. (2012). Atmospheric Chemistry and Climate. 102(3):426–439.

Syaifullah MD. (2013). Kondisi Curah Hujan Pada Kejadian Banjir Jakarta Dan Analisis Kondisi Udara Atas Wilayah Jakarta Bulan Januari – Februari 2013. J Sains Teknol Modif Cuaca. 14(1):19. doi:10.29122/jstmc.v14i1.2678.

Twomey. (1977). The Influence of Pollution on Shortwave Albedo of Clouds. J Atmos Sci. 34:1149–1152.

Wahyunto, Ritung S, Suparto, Subagjo. (2004). Peat distributin and carbon content in Sumatra and Kalimantan.

Wang Y, Khalizov A, Levy M, Zhang R. (2013). New Directions: Light absorbing aerosols and their atmospheric impacts. Atmos Environ. 81:713–715. doi:10.1016/j.atmosenv.2013.09.034.

Zhai S, Jacob DJ, Brewer JF, Li K, Moch JM, Kim J, Lee S, Lim H, Lee HC, Kuk SK, et al. (2021). Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. Atmos Chem Phys. 21(22):16775–16791. doi:10.5194/acp-21-16775-2021.

Most read articles by the same author(s)

1 2 > >>