PERBAIKAN ESTIMASI CURAH HUJAN BERBASIS DATA SATELIT DENGAN MEMPERHITUNGKAN FAKTOR PERTUMBUHAN AWAN
Main Article Content
Abstract
Intisari
Permasalahan utama dalam mengestimasi curah hujan menggunakan data satelit adalah kegagalan membedakan antara awan cumuliform dengan awan stratiform dimana dapat menyebabkan nilai estimasi hujan under/overestimate. Dalam penelitian ini teknik estimasi curah hujan berbasis satelit yang digunakan adalah modifikasi Convective Stratiform Technique (CSTm). CSTm memiliki kelemahan ketika harus menghitung sistem awan konveksi dengan inti konveksi yang sangat luas karena akan memiliki nilai slope parameter kecil, sehingga menghasilkan estimasi curah hujan yang underestimate. Dengan melibatkan perhitungan faktor pertumbuhan awan di algoritma CSTm permasalahan tersebut dapat diatasi. Penelitian ini menerapkan algoritma CSTm dan faktor pertumbuhan awan (CSTm+Growth Factor) untuk mengestimasi kejadian hujan lebat yang menyebabkan banjir di Jakarta pada tanggal 24 Januari 2016 yang digunakan juga sebagai studi kasus di proyek pengembangan model NWP di BMKG. Hasil penelitian menunjukan bahwa perlibatan faktor pertumbuhan awan sangat efektif memperbaiki kelemahan teknik CSTm, diperlihatkan dengan peningkatan nilai korelasi dari 0.6 menjadi 0.8 untuk wilayah Kemayoran dan -0.1 menjadi 0.83 untuk wilayah Cengkareng. Secara umum gabungan teknik CSTm dan faktor pertumbuhan awan dapat memperbaiki estimasi nilai intensitas dan fase hujan.
Â
AbstractÂ
The main problem in estimating rainfall using satellite data is a failure to distinguish between cumuliform and stratiform clouds, which can cause under/overestimate of rains. In this research, the Modified Convective Stratiform Technique (CSTm) has been used to estimate rainfall based on satellite data. The weakness of the CSTm technique is defined when calculating the convective cloud system within a widely convective point. Cloud convective will have a low value of parameter slope and produce an underestimate of rainfall. This issue can be resolved by calculating the cloud growth factor on CSTm. CSTm algorithm and cloud growth factor (CSTm+Growth Factor) has been applied to this research to estimate heavy rainfall for floods event in Jakarta area on January 24th, 2016. The result showed that the cloud growth factor is very effective in improving the weakness of rainfall estimation using the CSTm technique. Correlation between estimation and observation rainfall has increased from 0,6 to 0,8 on Kemayoran and from -0,1 to 0,83 on Cengkareng. The coupled method of CSTm and cloud growth factor significantly improve in estimating phase and intensity of rainfall.Article Details
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d). Each author must sign the copyright transfer statement. The article will not be published unless this form has been signed and received.
OPEN ACCESS POLICY
Jurnal Sains & Teknologi Modifikasi Cuaca provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JSTMC by BBTMC-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JSTMC
References
Adler, R.F., Negri, A.J. (1988). A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall. Journal of Applied Meteorology, 27(1), 30-51. doi: 10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2
BPBD. (2016). https://www.liputan6.com/news/read/2419869/titik-banjir-di-ibu-kota-kelapa-gading-tergenang-10-cm. Diakses tanggal 1 Oktober 2019.
Collischonn, B., Collischonn, W., Tucci, C.E.M. (2008). Daily Hydrological Modeling in the Amazon Basin Using TRMM Rainfall Estimates. Journal of Hydrology, 360(1–4), 207–216. doi: 10.1016/j.jhydrol.2008.07.032
Derin, Y., Yilmaz, K.K. (2014). Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography. Journal of Hydrometeorology, 15(4), 1498–1516. doi: 10.1175/JHM-D-13-0191.1
Endarwin., Hadi, S., Tjasyono, H.K.B., Gunawan, D., Siswanto. (2014). Modified Convective Stratiform Technique (CSTm) Performance on Rainfall Estimation in Indonesia, Journal of Mathematical and Fundamental Sciences, Vol 46(3), 251-268. doi: 10.5614/j.math.fund.sci.2014.46.3.4
Goldenberg, S.B., Houze, Jr., R.A., Churchill, D.D. (1990). Convective and Stratiform Components of a Winter Monsoon Cloud Cluster Determined from Geosynchronous Infrared Satellite Data. Journal of The Meteorological Society of Japan, 68(1), 37-63. doi: 10.2151/jmsj1965.68.1_37
Islam, Md.N., Islam, A.K.M.S., Hayashi, T., Terao, T., Uyeda, H. (2002). Application of a Method to Estimate Rainfall in Bangladesh Using GMS5 Data. Journal of Natural Disaster Science, 24(2), 83-89.
Juaeni, I., (2006). Analisis Variabilitas Curah Hujan Wilayah Indonesia Berdasarkan Pengamatan Tahun 1975-2004. Jurnal Matematika, 9(2), 171-180.
Kidd, C., Kniveton, D.R., Todd, M.C., Bellerby, T.J. (2003). Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms. Journal of Hydrometeorology, 4(6), 1088-1104. doi: 10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2
Kusumawati, Y., Effendy, S., Aldrian, E. (2008). Variasi Spasial dan Temporal Hujan Konvektif di Pulau Jawa Berdasarkan Citra Satelit. Jurnal Agromet Indonesia, 22(1).
Martin, D.W., Scherer, W.D. (1973). Review of Satellite Rainfall Estimation Methods. Bulletin of the American Meteorological society, 54(7), 661-675. doi: 10.1175/1520-0477-54.7.661
Negri, A.J., Adler, R.F. (1993). An Intercomparison of Three Satellite Infrared Rainfall Techniques over Japan and Sourrounding Waters. Journal of Applied Meteorology, 32(2), 357-373. doi: 10.1175/1520-0450(1993)032<0357:AIOTSI>2.0.CO;2
Ringard, J., Becker, M., Seyler, F., Linguet, L. (2015). Temporal and Spatial Assessment of Four Satellite Rainfall Estimates over French Guiana and North Brazil. Remote Sensing, 7(12), 16441-16459. doi: 10.3390/rs71215831
Ringard, J., Seyler, F., Linguet, L. (2017). A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield. Sensors, 17(6), 1413. doi: 10.3390/s17061413
Sapiano, M.R.P., Arkin, P.A. (2009), An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data. Journal of Hydrometeorology, 10(1), 149-166. doi: 10.1175/2008JHM1052.1
Scofield, R.A. (1987). The NESDIS Operational Convective Precipitation-Estimation Technique. Monthly Weather Review, 115(8), 1773-1792. doi: 10.1175/1520-0493(1987)115%3C1773:TNOCPE%3E2.0.CO;2
Supari, Tangang, F., Juneng, L., Aldrian, E. (2016). Observed Changes in Extreme Temperature and Precipitation over Indonesia. International Journal of Climatology, 37(4), 1979-1997. doi: 10.1002/joc.4829
WMO. (1994). Guide to Hydrological Practices: Data Acquisition and Processing, Analysis, Forecasting and Other Applications. WMO Guideline No. 168. http://www.innovativehydrology.com/WMO-No.168-1994.pdf
Zubieta, R., Getirana, A., Espinoza, J.C., Lavado, W. (2015). Impacts of Satellite-Based Precipitation Datasets on Rainfall–Runoff Modeling of the Western Amazon Basin of Peru and Ecuador. Journal of Hydrology, 528, 599–612. doi: 10.1016/j.jhydrol.2015.06.064
Zubieta, R., Getirana, A., Espinoza, J.C., Lavado-Casimiro, W., Aragon, L. (2017). Hydrological Modeling of the Peruvian–Ecuadorian Amazon Basin Using GPM-IMERG Satellite-Based Precipitation Dataset. Hydrology and Earth System Sciences, 21(7), 3543–3555. doi: 10.5194/hess-21-3543-2017