KONVERGENSI ATMOSFER LAPISAN BAWAH DAN HUBUNGANNYA DENGAN HUJAN EKSTRIM (STUDI KASUS: BANJIR CIREBON 15 FEBRUARI 2017)

Main Article Content

Erwin Mulyana

Abstract

Intisari

Telah dilakukan analisis kondisi atmosfer di berbagai lapisan ketinggian untuk melihat keterkaitannya dengan kejadian hujan ekstrim di wilayah perbatasan Jawa Barat-Jawa Tengah pada tanggal 15 Februari 2017. Area penelitian difokuskan di area 108.00-109.50 BT dan 6.50-7.50 LS yang merupakan area hujan ekstrim (AHE). Analisis sebaran dan waktu kejadian hujan menggunakan data GSMaP dengan resolusi 0.10 x 0.10 dan periode setiap satu jam, data satelit MERRA2 dengan resolusi 0.6250 x 0.50 dengan periode setiap 3 jam, data Radiosonde stasiun Cengkareng jam 07.00 dan 19.00 WIB, serta citra satelit Himawari 8. Hujan di wilayah AHE berlangsung pada jam 13.00–23.00 WIB dengan puncak hujan terjadi pada jam 18.00 WIB. Saat terjadi hujan ekstrim, terdapat perlambatan angin baratan di wilayah AHE serta adanya pertemuan angin dari utara dan dari selatan di wilayah tersebut. Area AHE merupakan area dengan konvergensi kuat pada level ketinggian 925 mb dan 850 mb, sebaliknya terjadi divergensi pada level ketinggian 700 mb dan 500 mb. Data Radiosonde menunjukkan kelembapan udara dari permukaan hingga lapisan 400 mb umumnya lebih dari 80%. Freezing level pada jam 07.00 WIB terdapat di level 571 mb (4.622 m) dan pada jam 19.00 WIB terdapat di level 585 mb (4.820 m).

 

Abstract

Have been analyzed of the atmospheric conditions at various altitudes in its relationship with extreme rainfall over West Java-Central Java border area on February 15th, 2017. The study area is focused on the 108.00-109.50 East and 6.50-7.50 South, which is the extreme rainfall area (AHE). The data used in this study are GSMaP hourly rainfall (0.10 x 0.10), MERRA2 satellite three-hourly data (0.6250 x 0.50), Cengkareng Radiosonde data at 07.00 LT and 19.00 LT, and Himawari 8 Satellite imagery. The rainfall in the AHE area occurred at 13.00–23.00 LT, with the peak rainfall, occurred at 18.00 LT. The lower atmospheric westerly wind became slower over the AHE area, while the northerly and southerly wind converged at this area. The AHE area has a strong convergence at level 925 mb, and 850 mb, conversely divergence occurred at level 700 mb and 500 mb. The Radiosonde data shows that the air humidity is generally more than 80% from the surface to 400 mb. The freezing level at 07.00 LT found at 571 mb (4,622 m) while at 19.00 LT found at 585 mb (4,820 m).

Article Details

Section
Articles

References

Aldrian, E., Susanto, R.D. (2003). Identification of Three Dominant Rainfall Region Within Indonesia and Their Relationship to Sea Surface Temperature. International Journal of Climatology, 23(12), 1435-1452. doi: 10.1002/joc.950

Aldrian, E., Gates, L.D., Widodo, F.H. (2007). Seasonal Variability of Indonesian Rainfall in ECHAM4 Simulations and in the Reanalyses: The Role of ENSO. Theoretical and Applied Climatology, 87, 41-59. doi: 10.1007/s00704-006-0218-8

Chang, C.P., Wang, Z., Ju, J., Li, T. (2004). On the Relationship between Western Maritime Continent Monsoon Rainfall and ENSO during Northern winter. Journal of Climate, 17(3), 665-672. doi: 10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2

Chang, C.P., Wang, Z., McBride, J., Liu, C.H. (2005). Annual Cycle of Southeast Asia-Maritime Continent Rainfall and the Asymmetric Monsoon Transition. Journal of Climate, 18(2), 287-301. doi: 10.1175/JCLI-3257.1

McBride, J.L., Haylock, M.R., Nicholls, N. (2003). Relationships between the Maritime Continent Heat Source and the El Niño-Southern Oscillation Phenomenon. Journal of Climate, 16(17), 2905-2914. doi:

1175/1520-0442(2003)016<2905:RBTMCH>2.0.CO;2

Mulyana, E. (2002). Hubungan antara ENSO dengan Variasi Curah Hujan di Indonesia. Jurnal Sains & Teknologi Cuaca, 3(1), 1-4.

Mulyana, E. (2017). Estimasi Volume Air Hujan pada saat Kejadian Banjir Cirebon Timur Tanggal 15-16 Februari 2017. Jurnal Sains dan Teknologi Mitigasi Bencana, 12(2), 11-18. doi: 10.29122/jstmb.v12i2.2134

Qian. J.H., Robertson, A.W., Moron, V. (2010). Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. Journal of the Atmospheric Science, 67(11), 3509-3524. doi: 10.1175/2010JAS3348.1

Ramage, C.S. (1968). Role of a Tropical “Maritime Continent†in the Atmospheric Circulation. Monthly Weather Review, 96(6), 365–370.

Renggono, F. (2013). Analisis Hujan pada saat Banjir DKI dengan C-Band Radar. Jurnal Sains & Teknologi Modifikasi Cuaca, 14(1), 51-58. doi: 10.29122/jstmc.v14i1.2682

Saji, N.H., Yamagata, T. (2003). Possible Impacts of Indian Ocean Dipole Mode Events on Global Climate. Climate Reseach, 25(2), 151-169. doi: 10.3354/cr025151

Westra, S., Alexander, L.V., Zwiers, F.W. (2013). Global Increasing Trends in Annual Maximum Daily Precipitation. Journal of Climate, 26(11), 3904-3918. Doi: 10.1175/JCLI-D-12-00502.1

Wu, P., Hara, M., Fudeyasu, H., Yamanaka, M.D., Matsumoto, J., Syamsudin, F., Sulistyowati, R., Djajadihardja, Y.S. (2007). The Impact of Trans-equatorial Monsoon Flow on the Formation of Repeated Torrential Rains over Java Island. SOLA, 3, 93−96. doi: 10.2151/sola.2007-024

Wu, P., Arbain, A.A., Mori, S., Hamada, J.I., Hattori, M., Syamsudin, F., Yamanaka, M.D. (2013). The Effects of an Active Phase of the Madden-Julian Oscillation on the Extreme Precipitation Event over Western Java Island in January 2013. SOLA, 9, 79 – 83. doi: 10.2151/sola.2013-018

Xu, Z.X., Takeuchi, K., Ishidaira, H. (2004). Correlation between El Niño–Southern Oscillation (ENSO) and Precipitation in South-East Asia and the Pacific Region. Hydrological Processes, 18(1), 107-123. doi: 10.1002/hyp.1315