MODEL ESTIMASI DATA INTENSITAS RADIASI MATAHARI UNTUK WILAYAH BANTEN
Main Article Content
Abstract
Data intensitas radiasi matahari (Rs, MJ/m2/day) memiliki peran yang sangat penting dalam pemodelan cuaca dan iklim guna mengkuantifikasi panas yang dipertukarkan antara permukaan dan atmosfer. Namun, keterbatasan jumlah titik pengamatan intensitas radiasi matahari menjadikan pemodelan sebagai alternatif solusi yang relatif mudah dan murah untuk pengambilan data intensitas radiasi. Penelitian ini bertujuan untuk mengevaluasi performa model dalam mengestimasi nilai intensitas radiasi matahari di wilayah penelitian menggunakan dua pendekatan model yang berbeda, yaitu model empiris oleh Keiser, Arkansas (AR) dan model deterministik. Tiga variabel utama cuaca yang digunakan sebagai input data model adalah curah hujan (mm), suhu maksimum (°C), dan suhu minimum (°C). Kedua model tersebut dipilih karena dapat diterapkan dengan hanya melibatkan variabel utama atmosfer yang tersedia dalam waktu yang panjang di lokasi penelitian. Hasil prediksi yang dilakukan dengan model kemudian dibandingkan dengan data reanalisis National Centers for Environmental Prediction (NCEP) pada titik koordinat wilayah Stasiun Klimatologi Pondok Betung. Hasilnya menunjukkan performa model empirik lebih baik dalam menggambarkan variasi temporal dan prediksi variabel intensitas matahari dibandingkan model deterministik. Hal tersebut ditunjukkan dengan nilai korelasi yang cukup baik, yakni mencapai 0,72 (korelasi kuat) dan nilai Root Mean Square Error (RMSE) 2,0. Atas dasar hasil pemodelan yang cukup representatif di lokasi penelitian, analisis secara spasial kemudian diterapkan untuk skala wilayah yang lebih luas, yaitu Provinsi Banten. Berdasarkan tinjauan secara spasial di wilayah kajian, model empirik memiliki performa yang bervariasi di wilayah Provinsi Banten. Hasil prediksi intensitas radiasi matahari di wilayah bagian barat memiliki performa yang lebih baik dibandingkan wilayah bagian timur.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d). Each author must sign the copyright transfer statement. The article will not be published unless this form has been signed and received.
OPEN ACCESS POLICY
Jurnal Sains & Teknologi Modifikasi Cuaca provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JSTMC by BBTMC-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JSTMC
References
Ball, R.A., Purcell, L.C., Carey, S.K. (2004). Evaluation of Solar Radiation Prediction Models in North America. Agronomy Journal, 96(2), 391-397. doi: 10.2134/agronj2004.0391
Brinsfield, R., Yaramanoglu, M., Wheaton, F. (1984). Ground Level Solar Radiation Prediction Model Including Cloud Cover Effects. Solar Energy, 33(6), 493-499.
Bristow, C.L., Campbell, G.S. (1984). On The Relationship Between Incoming Solar Radiation and Daily Maximum and Minimum Temperature. Agric. For. Meteorol. 31(2), 159-166. doi: 10.1016/0168-1923(84)90017-0
Cengiz, H.S., Gregory, J.M., Sebaugh, J.L., (1981). Solar Radiation Prediction From Other Climatic Variables. Trans. ASAE 24(5), 1269-1272. doi: 10.13031/2013.34431
Christensen, P. (1989). Fitting Distribution to Data. Entropy Limited, Lincoln Mass.
Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, D.P. dan Bechtold, P., (2011). The ERA?Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597. doi: 10.1002/qj.828
Elizondo, D., Hoogenboom, G., McClendon, R.W. (1994). Development of A Neural Network Model to Predict Daily Solar Radiation. Agric. For. Meteorol. 71(1-2), 115-132. doi: 10.1016/0168-1923(94)90103-1
Goodnight, J.H. (1980). Tests of Hypotheses In Fixed Effects Linear Models. Communications in Statistics-Theory and Methods, 9(2), 167-180. doi: 10.1080/03610928008827869
Hodges, T., French, V., LeDuck, S.K. (1985). Estimating Solar Radiation for Plant Simulation Models. Columbia, MO: NOAA-NESDIS-AISC.
Hoogenboom, G., Jones, J.W., Boote, K.J. (1992). Modeling Growth, Development and Yield of Grain Legumes Using SOYGRO PNUTGRO, and BEANGRO: a review. Trans. ASAE 35(6), 2043-2056.
Hook, J.E., McClendon, R.W. (1992). Estimation of Solar Radiation Data Missing from Long-Term Meteorological Records. Agron. J. 88, 739-742. doi: 10.2134/agronj1992.00021962008400040036x
Hunt, L.A. (1994). Data requirements for crop modeling. In: Application of Modeling in the Semi-Arid Tropics. International Council of Scientific Unions. 15-25.
Hunt, L.A. dan Pararajasingham, S., (1995). Cropsim-Wheat: A Model Describing The Growth and Development of Wheat. Can. J. Plant Sci. 75(3), 619-632. doi: 10.4141/cjps95-107
Hunt, L.A., Kuchar, L., dan Swanton, C.J. (1998). Estimation of solar radiation for use in crop modeling. Agricultural and Forest Meteorology 91, 293-300.
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, dan Joseph D. (1996). The NMC/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77(3), 437–471. 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Mamenun, Pawitan, H., Sophaheluwakan, A. (2014). Validasi dan Koreksi Data Satelit TRMM Pada Tiga Pola Hujan di Indonesia, Jurnal Meteorologi dan Geofisika, 15(1), 13-23. doi: 10.31172/jmg.v15i1.169
Meinke, H., Carberry, P.S., McCaskill, M.R., Hills, M.A., McLeod, I. (1995). Evaluation of Radiation and Temperature Data Generators In The Australian Tropics and Sub-Tropics Using Crop Simulation Models. Agric. For. Meteorol. 72, 295-316.
Petersen, M.S. (1990). Implementation Of Semi-Physical Model for Examining Solar Radiation in The Midwest. Illinois: Midwestern Climate Center, Atmospheric Sciences Division, Illinois State Water Survey.
Reddy, S.J. (1987). The estimation of global solar radiation and evaporation through precipitation – A note. Solar Energy 38, 97-104. doi: 10.1016/0038-092X(87)90032-6
Spitters, C.J.T., Toussaint, H.A.J.M., Goudriaan, J. (1986). Separating The Diffuse And Direct Component of Global Radiation And Its Implications for Modeling Canopy Photosynthesis. I. Components of Incoming Radiation. Agric. For. Meteorol. 38(1-3), 217±229. doi: 10.1016/0168-1923(86)90060-2
Sugiyono. (2012). Statistika untuk Penelitian. Bandung: CV Alfabeta.
Supit, I. (1994). EUR 15745 - Global Radiation. Luxembourg: Office for Official Publication of the European Communities.
Swarinoto, S.Y., Husain. (2012). Estimasi Curah Hujan dengan Metode Auto Estimator (Kasus Jayapura dan Sekitarnya). Jurnal Meteorologi dan Geofisika 13(1). doi: 10.31172/jmg.v13i1.118
Syaifullah, M.D. (2014). Validasi data TRMM terhadap data curah hujan actual di tiga DAS di Indonesia, Jurnal Meteorologi dan Geofisika, 15(2), 109–118. doi: 10.31172/jmg.v15i2.180
Thornton, P.E., Running, S.W. (1999). An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 93:211–228.
Wilks, D.S. (2006). Statistical methods in the atmospheric sciences, 2nd ed. London: Elsevier Academic Press.