SIMULASI NUMERIK MEKANISME TURBULENSI DEKAT AWAN KONVEKTIF

Main Article Content

Ni Putu Tiana Verayanti
I Kadek Nova Arta Kusuma

Abstract

Intisari


Turbulensi yang dialami oleh pesawat komersial rute Jakarta-Medan telah dilaporkan mengalami Clear Air Turbulence (CAT) di atas Sumatera Utara pada tanggal 24 Oktober 2017. Namun berdasarkan data citra satelit Himawari dari Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Indonesia menyebutkan bahwa di sekitar lokasi turbulensi terdapat awan kumulonimbus. Penelitian ini memanfaatkan model WRF-ARW dengan resolusi spasial dan temporal tinggi untuk mengetahui secara detail proses yang terjadi pada awan konvektif penyebab Near Cloud Turbulence (NCT). Turbulensi tersebut disebabkan oleh bilangan Richardson rendah yang terbentuk di wilayah udara jernih (clear air) yang berjarak 300-700 m di atas puncak awan dan diperkuat dengan adanya Turbulensi Energi Kinetik (TKE) mencapai 4,4 m2 / s2 dan geser angin vertikal (VWS) oleh arus keluar awan konvektif. 


Abstract


Turbulence encountered by commercial aircraft Jakarta-Medan routes has been reported that experienced Clear Air Turbulence (CAT) over North Sumatra on October 24th, 2017. However, based on Himawari satellite imagery data produced by Agency for Meteorology, Climatology, and Geophysics (BMKG), Indonesia stated that there was a cumulonimbus cloud around the turbulence location. This study utilizes WRF-ARW models with a high spatial and temporal resolution to find out in detail the processes that occur in convective clouds causing Near Cloud Turbulence (NCT). The turbulence was caused by a low Richardson number formed in the clear-air area, which has a distance of 300 - 700 m above the cloud top and reinforced by the existence of Turbulence Kinetic Energy (TKE) reaching 4,4 m2/s2 and vertical wind shear (VWS) by deep convection’s outflow.

Article Details

Section
Articles

References

Arakawa, dan Jung, J.-H., (2011). Multiscale modeling of the moist convective atmosphere. A review. Atmos. Res. 102. 263–285. doi: 10.1175/AMSMONOGRAPHS-D-15-0014.1

Duran, P. dan Molinari, J. (2016). Upper-tropospheric low richardson number in tropical cyclones: sensitivity to cyclone Intensity and the diurnal cycle. J. Atmos. Sci, 73, 545-54. doi: 10.1175/JAS-D-15-0118.1

Hong, S-Y., Kim, J-H., Lim, J., dan Dudhia, J., (2006). The WRF single moment microphysics scheme (WSM). Journal of the Korean Meteorological Society. 42. 129-151.

Kim, J. H., dan Chun, H. Y., (2012). A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol, 51, 1180-1200. doi: 10.1175/JAMC-D-11-0140.1

KNKT. (2017) Aircraft accident investigation report PT. Batik Air Boeing 737-800; PK-LBY inflight from Jakarta to Medan Republic of Indonesia 24 October 2017 Preliminary: NTSC.17.10.31.04. Indonesia: National Transportation Safety Committee Republic of Indonesia

Kompas, (2017). Batik Air Alami Turbulensi, Satu Penumpang dan Awak Alami Patah Tulang Tanggal 25 Oktober 2017 Pukul 15.29 WIB. (https://regional.kompas.com/read/2017/10/25/15293911/batik-air-alami-turbulensi-satu-penumpang-dan-awak-alami-patah-tulang.)

Lane, T. P., Sharman, R. D., Clark, T. L. dan Hsu, H. M., (2003). An Investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 1297–1321. doi: 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2

Lane, T. P., Sharman, R. D., Trier, S. B., Fovell, R. G. dan William, J. K., (2012). Recent advances in the understanding of near-cloud turbulence, Bull. .Amer. Meteor. Soc. 93, 499-515. doi:10.1175/BAMS-D-11-00062.1

Molarin, K., (2013). Case study of CAT over the North Atlantic Ocean. Stockholm: University Stockholm

Sharman, R. D., dan Lane, T. P. (2016). Aviation turbulence: process, detection, prediction. Colorado: Springer Inc.

Skamarock, W. C., Klemp, J. P., Dudhia, J., Gill, D. O., Barke, D. M, Duda, M. G., Huang, X. Y., Wang, W., dan Powers, J. G., (2008). A description of the advanced research WRF version 3. Colorado: National Center for Atmospheric Research (NCAR)

Trier, S. B., Sharman, R. D., dan Lane, T. P., (2012). Influence of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 2477-96. doi: 10.1175/MWR-D-11-00353.1

Trier, S. B. dan Sharman, R. D., (2009). Convective-Permitting Simulations of The Environment Supporting Widespread Turbulence Within The Upper-Level Outflow of A Mesoscale System, Mon. Wea. Rev., 137, 1972-1990. doi: 10.1175/2008MWR2770.1

Storer, L.N., Williams, P.D. dan Gill, P.G., (2012) Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change. Pure Appl. Geophys. 176, 2081–2095. doi: 10.1007/s00024-018-1822-0

Most read articles by the same author(s)