Main Article Content

Dini Harsanti
Krisna Adhitya
Safrizal Safrizal



Hygroscopic cloud seeding, which uses giant cloud condensation nuclei (GCCN) particles with diameters between 2-5 µm, has been known to be 100 times more effective compared to those that use hygroscopic flares. Micronisation through jet milling has been recognized as the most common and ubiquitous method used to obtain particles with such a narrow size (2-5 µm) distribution. This research has successfully developed and identified 2-5 µm NaCl powders mixed with 10% cab-o-sil anticaking agent and 2 (two) times jet milling frequency as a potential GCCN (hygroscopic) seeding material. We use a combination of jet mill micronisation, rough milling with a Cross-Beather Mill, and analytical sieving to produce powders with those mentioned above (2-5 µm) size distribution. We varied the anticaking agent percentage in the mixture and the jet milling process frequency to identify which parameters would result in the 2-5 µm size distribution. We then confirmed the micronisation results particle size distribution with a particle size analyzer (PSA) and its morphology with a scanning electron microscope (SEM) machine. The materials with the 10% cab-o-sil agent mixture were confirmed to have the aforementioned size distribution from the characterization results.


Penyemaian awan higroskopis menggunakan partikel giant cloud condensation nuclei (GCCN) dengan diameter 2-5 m telah diketahui 100 kali lebih efektif dibandingkan dengan yang menggunakan flare higroskopis. Mikronisasi melalui jet milling telah dikenal sebagai metode yang paling umum dan banyak digunakan untuk mendapatkan partikel dengan distribusi ukuran sempit (2-5 µm). Penelitian ini berhasil mengembangkan dan mengidentifikasi serbuk NaCl 2-5 µm yang dicampur dengan 10% anti gumpal berupa Cab-O-Sil dan frekuensi jet milling 2 (dua) kali sebagai bahan penyemaian GCCN (higroskopis) potensial. Pada penelitian ini telah digunakan kombinasi mikronisasi jet mill, penggilingan kasar dengan Cross-Beather Mill, dan ayakan analitik untuk menghasilkan serbuk dengan distribusi ukuran yang disebutkan di atas (2-5 µm). Telah divariasikan pula persentase bahan anti gumpal dalam campuran dan frekuensi proses jet milling untuk mengidentifikasi parameter yang akan menghasilkan distribusi ukuran 2-5 µm. Distribusi ukuran partikel hasil mikronisasi tersebut kemudian dikonfirmasi dengan alat analisa ukuran partikel (PSA) dan morfologinya dengan mesin scanning electron microscope (SEM). Dari hasil karakterisasi, material dengan campuran anti gumpal Cab-O-Sil sebanyak 10% dipastikan memiliki sebaran ukuran tersebut.

Article Details

Author Biographies

Dini Harsanti, National Laboratory for Weather Modification Technology, Agency for The Assessment and Application of Technology

Instrumentation and Seeding Material Staff

Krisna Adhitya, National Laboratory for Weather Modification Technology, Agency for The Assessment and Application of Technology, BPPT

Head of Instrumentation and Seeding Materials Subdivision, Civil Servant Grade IIIc

Safrizal Safrizal, National Laboratory for Weather Modification Technology, Agency for The Assessment and Application of Technology

General Affairs Staff


Braham, R.R. (1986). Precipitation Enhancement—A Scientific Challenge. Meteorological Monograph. American Meteorological Society. doi: 10.1007/978-1-935704-17-1_1

Bruintjes, R.T. (1999). A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80, 805-820. doi: 10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2

Clark, A.R., Hsu, C.C., Walsh, A.J., (1996). Preparation of Sodium Chloride Aerosol Formulations. Genentech, Inc., South San Francisco, CA, 15pp, US5747002.

Cooper, W.A., Bruintjes, R.T., and Mather, G.K. (1997). Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 1449–1469. doi: 10.1175/1520-0450(1997)036<1449:CPTHSW>2.0.CO;2

Czys, R.R., and Bruintjes, R.T. (1994). A review of hygroscopic seeding experiments to enhance rainfall. J. Wea. Mod., 26, 41-52.

Drofa, A.S., Ivanov, V.N., Rosenfeld D., and Shilin, A.G. (2010). Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds. Atmos. Chem. Phys., 10, 8011– 8023.

Gary Liu, P.E. (2017). Hammer Milling and Jet Milling Fundamentals. American Institute of Chemical Engineers. https://www.aiche.org. 48-54.

Gommeren, H.J.C, Heitzmann, D.A., Kramer, H.J.M, Heiskanen, K., and Scarlett, B. (1996). Dynamic modeling of a closed loop jet mill. Int. J. Miner. Process., 44–45, 497–506.

Harmon, C.W., Grimm, R.L., McIntire, T.M., Peterson, M.D., Njegic, B., Angel, V.M., Alshawa, A., Underwood, J.S., Tobias, D.J., Gerber, R.B., Gordon, M.S., Hemminger, J.C., dan Nizkorodov, S.A. (2010). Hygroscopic growth and deliquescence of NaCl nanoparticles mixed with surfactant SDS. J. Phys. Chem. B., 114(7), 2435-2449. doi: 10.1021/jp909661q

McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M.C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T.F., Murphy, D.M., O’Dowd, C.D., Snider, J.R., Wingartner. (2006). The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6(9), 2593-2649. doi: 10.5194/acp-6-2593-2006

Rosenfeld, D., Axisa, D., Woodley, W.L., and Lahav, R. (2010). A Quest for Effective Hygroscopic Cloud Seeding, J. Appl. Meteorol. Clim., 49, 1548-1562. doi: 10.1175/2010JAMC2307.1

Segal, Y., Khain, A., Pinsky, M., and Rosenfeld, D. (2004). Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model. Atmos. Res., 71, 3–34. doi: 10.1016/j.atmosres.2004.03.003

Silverman, B.A., Sukarnjanaset, W., (2000). Results of the Thailand warm-cloud hygroscopic particle seeding experiment. J. Appl. Meteorol., 39, 1160– 1175. doi: 10.1175/1520-0450(2000)039<1160:ROTTWC>2.0.CO;2

Sullivan, R.C., Moore, M.J.K., Petters, M.D., Kreidenweis, S.M., Roberts, G.C., Prather, K.A. (2009). Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 9(10), 3303-3316. doi: 10.5194/acp-9-3303-2009