THE SEASONAL TREND OF UPPER-AIR AND VERTICAL TEMPERATURE PROFILE BASED ON RADIOSONDE OVER INDONESIA
Main Article Content
Abstract
Radiosonde data is one of the data that can be used for upper-air climatological analysis. Pressure, air temperature (T), dew point temperature (Td), wind, and humidity (RH) are the types of data provided by radiosondes. Unfortunately, the utilization of radiosonde data in Indonesia has not been optimal, resulting in a lack of understanding of seasonal air parameter patterns and the vertical structure of the trend of changes in upper-air temperature in Indonesia. This study aims to analyze the seasonal upper-air parameters and analyze the vertical structure of the trend of changes in upper-air temperature in Indonesia. This study uses radiosonde data from 10 radiosonde observation stations in Indonesia. The analysis of seasonal air parameters was carried out by finding the average seasonal value, while the analysis of air temperature trends was carried out using the Mann-Kendall method. The results indicate that the dew point temperature is distinctly different seasonally than the seasonal air temperature. The seasonal dew point temperature difference ranges from 0.5 to 13 oC, while the seasonal air temperature difference ranges from -0.6 to 1.1 oC. The smaller T-Td value, the greater RH value. The trends in upper-air temperature show that most of the study area shows a trend of heating of the upper-air temperature in the troposphere (1000-250 mb), which is between 0.00005 to0.00058 oC/13 years, 0.00012 to 0.00031 oC/9 years, and 0.00009 to 0.00042 oC/10 years and cooling in the lower stratosphere(100 mb) is -0.00011 to -0.00067 oC/13 years.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d). Each author must sign the copyright transfer statement. The article will not be published unless this form has been signed and received.
OPEN ACCESS POLICY
Jurnal Sains & Teknologi Modifikasi Cuaca provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JSTMC by BBTMC-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JSTMC
References
Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J. (2003). Guidelines On Climate Metadata And Homogenization. World Meteorol Organ. (1186):52.
Angell J. (1988). Variations and Trends in Tropospheric and Stratospheric Global Temperatures, 1958–87. J Clim. 1(12):1296–1313. doi: 10.1175/1520-0442(1988)001<1296:VATITA>2.0.CO;2.
Budiarti M, Muslim M, Ilhamsyah Y. (2012). Studi Indeks Stabilitas Udara Terhadap Prediksi Kejadian Badai Guntur (Thunderstorm) Di Wilayah Stasiun Meteorologi Cengkareng Banten. J Meteorol dan Geofis. 13(21 Desember 2012):110–117. doi: 10.31172/jmg.v13i2.125.
Bui A, Johnson F, Wasko C. (2019). The relationship of atmospheric air temperature and dew point temperature to extreme rainfall. Environ Res Lett. 14(7). doi:10.1088/1748-9326/ab2a26.
Crnivec N, Smith RK. (2015). Mean radiosonde soundings for the Australian monsoon/cyclone season. Trop CYCLONE Res Rep. doi: 10.1002/joc.4687.
Fatimah Zahroh N, Wayan Srimani Puspa Dewi N, Harsanti D. (2017). Indeks Labilitas Udara Untuk Memprediksi Kejadian Badai Guntur Pada Puncak Musim Hujan Tahun 2016. J Sains Teknol Modif Cuaca. 18(1):9–15. doi: 10.29122/jstmc.v18i1.1764.
Fibriantika E, Alhaqq RI. (2018). Profil Vertikal Atmosfer Selama Aktifitas Siklon Tropis Cempaka dan Dahlia. Meteorol dan Geofis. 19(2):49–58. doi: 10.31172/jmg.v19i2.589.
Karmeshu N. (2015). Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. Mausam. 66(1):1–6.
Lavrov AS, Sterin AM, Khohlova A V. (2020). Diagnostics of the upper-air temperature and wind climate changes based on radiosonde observations and on the fifth-generation reanalysis. IOP Conf Ser Earth Environ Sci. 606(1). doi:10.1088/1755-1315/606/1/012029.
Lochbihler K, Lenderink G, Siebesma AP. (2017). The spatial extent of rainfall events and its relation to precipitation scaling. Geophys Res Lett. 44(16):8629–8636. doi:10.1002/2017GL074857.
Mavromatis T, Stathis D. (2011). Response of the water balance in Greece to temperature and precipitation trends. Theor Appl Climatol. 104(1–2):13–24. doi:10.1007/s00704-010-0320-9.
Min Q, Li R, Wu X, Fu Y. (2013). Retrieving latent heating vertical structure from cloud and precipitation Profiles-Part I: Warm rain processes. J Quant Spectrosc Radiat Transf. 122:31–46. doi:10.1016/j.jqsrt.2012.11.030.
Mitchell JM, Dzerdzeevsku B, Flohn H, Hofmeyr WL, Lamb HH, Rao KN, Wallen CC. (1966). Climatic change. WMO Technical Note 79, WMO No. 195, TP-100. Geneva:World Meteorological Organization, p. 79.
Nurrohman Faqih, Tjasyono B. (2016). Kajian Indeks Stabilitas Atmosfer Terhadap Kejadian Hujan Lebat Di Wilayah Makassar (Studi Kasus Bulan Desember 2013 – 2014). J Meteorol Klimatologi dan Geofis. 3(2):18–24. doi:10.20961/prosidingsnfa.v3i0.28538.
Philandras CM, Nastos PT, Kapsomenakis IN, Repapis CC. (2015). Climatology of upper-air temperature in the Eastern Mediterranean region. Atmos Res. 152:29–42. doi:10.1016/j.atmosres.2013.12.002.
Qian JH, Robertson AW, Moron V. (2010). Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. J Atmos Sci. 67(11):3509–3524. doi:10.1175/2010JAS3348.1.
Randel WJ, Polvani L, Wu F, Kinnison DE, Zou CZ, Mears C. (2017). Troposphere-Stratosphere Temperature Trends Derived From Satellite Data Compared With Ensemble Simulations From WACCM. J Geophys Res Atmos. 122(18):9651–9667. doi:10.1002/2017JD027158.
Sipayung SB, Avia LQ, Dasanto BD, Sutikno. (2007). Analisis Pola Curah Hu]an Indonesia Berbasis Luaran Model Sirkulasi Global (Gcm). J Sains Dirgant. 4(2):145–154.
Wallace JM, Hobbs P V. (2006). Atmospheric Science: An Introductory Survey: Second Edition.
Wang JS, Seidel DJ, Free M. (2012). How well do we know recent climate trends at the tropical tropopause? J Geophys Res Atmos. 117(9):1–10. doi:10.1029/2012JD017444.
WMO. (2019). Manual on Codes, International Codes. Volume I.1. Part A - Alphanumeric Codes. Geneva:World Meteorological Organization.