ANALYSIS OF METEOROLOGICAL DROUGHT PROPAGATION TOWARDS HYDROLOGICAL DROUGHT IN THE UPPER BRANTAS WATERSHED, EAST JAVA

Main Article Content

Samba Wirahma
I Putu Santikayasa
Muh Taufik
Findy Renggono

Abstract

Abstract


Drought is defined as a water deficit condition from normal conditions in the hydrological system. Hydrological drought is a complex process that is preceded by a rainfall deficit. Unlike many other natural disasters, droughts develop slowly, making it difficult to pinpoint the beginning and end of a drought event. Research that focuses on studying the propagation of meteorological drought to hydrological drought is fundamental to revealing the processes and mechanisms of drought propagation. Drought propagation describes the change of meteorological drought signal into hydrological drought through the hydrological cycle. This study aims to analyze the characteristics of drought and evaluate the propagation of drought in the Upper Brantas watershed of East Java. This study uses the Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) methods with an accumulated time of 1, 3, 6, and 12 months to analyze meteorological and hydrological drought characteristics, while the drought propagation was analyzed using Pearson correlation. The results showed that the duration and severity of drought increased with the increase in the period of accumulation of SPI and SSI, while the number of drought events was inversely proportional to the period of accumulation of SPI and SSI. The severity of hydrological drought is higher than the severity of meteorological. The worst hydrological drought (SSI1 = -22.9) with a duration of 12 months occurred in 1997-1998. The high correlation in the condition that there is no time lapse between SSI and SPI shows that the meteorological drought indicator with SPI has the potential to be used as an early detection tool for hydrological drought in the Upper Brantas watershed. This research can be the first step to developing a hydrological drought early detection technique that is very useful in water resource management in watersheds for hydropower operations.

Article Details

Section
Articles
Author Biographies

I Putu Santikayasa, Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.

Departemen Geofisika dan Meteorologi, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Institut Pertanian Bogor, Kampus IPB Darmaga Bogor 16680

Muh Taufik, Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.

Departemen Geofisika dan Meteorologi, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Institut Pertanian Bogor, Kampus IPB Darmaga Bogor 16680

Findy Renggono, National Research and Innovation Agency

Pusat Riset Iklim dan Atmosfer, Badan Riset dan Inovasi Nasional, Puspiptek Serpong,

Tangerang 15314

References

AghaKouchak A, Nakhjiri N. 2012. A near real-time satellite-based global drought climate data record. Environ Res Lett. 7(4): 1812–1818. doi:10. 1088/1748-9326/7/4/044037.

Andreadis KM, Clark EA, Wood AW, Hamlet AF, Lettenmaier DP. 2005. Twentieth-century drought in the conterminous United States. J Hydrometeorol. 6(6): 985–1001.

Bachmair S, Stahl K, Collins K, Hannaford J, Acreman M, Svoboda M, Knutson C, Smith KH, Wall N, Fuchs B, Crossman ND, Overton IC. 2016. Drought indicators revisited: the need for a wider consideration of environment and society. WIREs Water. doi:10.1002/wat2.1154.

Barker LJ, Hannaford J, Chiverton A, Svensson C. 2016. From meteorological to hydrological drought using standardized indicators. Hydrology and Earth System Sciences. 20(6): 2483–2505. doi:10.5194/hess-20-2483-2016

DeGaetano AT. 1999. A temporal comparison of drought impacts and responses in the New York City metropolitan area. Climatic Change. 42(3): 539–560. doi:10.1023/A:1005413410160

Fleig A., 2004. Hydrological drought –A comparative study using daily discharge series from around the world [disertasi]. Univesitas Albert-Ludwigs., Freiburg.

Folland, C. K., J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, E. Wallace. 2015. Multiannual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year. Hydrol. Earth Syst. Sci. 19(5), pp. 2353–2375

Gustard A, Bullock A, Dixon JM. 1992. Low flow estimation in the United Kingdom, Institute of Hydrology, Wallingford, UK, IH Report No. 108, 88 pp.

Guttman, N. B., 1999. Accepting the standardized precipitation index: a calculation algorithm. J. Am. Water Resour. As., 35 (2), pp. 311–322

Hannaford J, Lloyd-Hughes B, Keef C, Parry S, Prudhomme C. 2011. Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrol Process. 7:1146–1162. doi:10.1002/hyp.7725

Hayes M, Svoboda M, Wall N, Widhalm M. 2011. The Lincoln declaration on drought indices: universal meteorological drought index recommended. B Am Meteorol Soc. 92:485–488.

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature. 529:84–87. doi:10.1038/nature16467

Liu JG, Diamond J. 2005. China’s environment in a globalizing world. Nature. 435(7046):1179–1186. doi:10.1038/4351179a

Lloyd-Hughes B. 2014. The impracticality of a universal drought definition. Theor Appl Climatol. 117: 607–611.

Lloyd-Hughes B, Saunders MA. 2002. A drought climatology for Europe. Int. J. Climatol. 22: 1571–1592.

Lorenzo-Lacruz J, Morán-Tejeda E, Vicente-Serrano, SM, López-Moreno JI. 2013. Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. Hydrol Earth Syst Sci. 17:119–134. doi:10.5194/hess-17-119- 2013.

McKee TB, Doesen NJ, Kleist J. 1993. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology. Boston: American Meteorological Society. 17(22):179–183.

Mishra, A.K., Singh, V.P., 2010. A review of drought concepts. J. Hydrol. 391(1–2), 204–216. http://dx.doi.org/10.1016/j.jhydrol.2010.07.012.

Mo K. 2008. Model-based drought indices over the United States. J Hydrometeorol. 9:1212–1230. doi:10.1175/2008JHM1002.1.

Palmer WC. 1965. Meteorological Drought. Department of Commerce Weather Bureau, Washington, DC.

Stagge JH, Tallaksen LM, Gudmundsson L et al. 2015. Candidate distributions for climatological drought indices (SPI and SPEI). Int J Climatol. 35(13):4027–4040. doi:10.1002/joc.4267.

Sun QH, Miao CY, Duan QY, Ashouri H, Sorooshian S, Hsu KL. 2018. A review of global precipitation datasets: Data sources, estimation, and intercomparisons. Reviews of Geophysics. 56:79–107. doi:10.1002/2017RG000574.

Svensson, C., A. Brookshaw, A. Scaife, V. Bell, J. Mackay, C. Jackson, J. Hannaford, H. Davies, A. Arribas, S. Stanley. 2015. Long-range forecasts of UK winter hydrology, Environ. Res. Lett. 10(6), 064006, pp. 1-6

Tallaksen LM, Van Lanen HAJ. 2004. Hydrological drought: processes and estimation methods for streamflow and groundwater. Elsevier.

Taufik M, Torfs, PJJF, Uijlenhoet R, Jones PD, Murdiyarso D, Van Lanen HAJ. 2017. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Climate Change. 7(6):428–431. doi:10.1038/nclimate3280.

Van Loon AF, Laaha G. 2015. Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology. 526:3-14.

Van Loon AF, Gleeson T, Clark J, Dijk AIJM, Stahl K, Hannaford J et al. 2016. Drought in the Anthropocene. Nature Geoscience. 9(2):89–91. doi:10.1038/ngeo2646.

Vicente-Serrano SM, Lopez-Moreno JI. 2005. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and Earth System Sciences. 9(5):523–533. doi:10.5194/hess-9-523-2005

Vicente-Serrano SM, Begueria S, Lopez-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim. 23(7):1696–1718. doi:10.1175/2009JCLI2909.1.

Vicente-Serrano SM, Lopez-Moreno JI, Begueria S et al. 2011. Accurate computation of a streamflow drought index. J Hydrol Eng. 17(2):318–332. doi:10.1061/(ASCE)HE.1943-5584.0000433.

Wang D, Hejazi M, Cai X et al. 2011. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour Res. 47(9):1995–2021. doi:10.1029/2010WR009845.

Wang QF, Wu JJ, Lei TJ, He B, Wu ZT, Liu M et al. 2014. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International. 349:10–21. doi:10.1016/j.quaint.2014.06.021

Wilhite DA. 2000. Drought as a natural hazard concepts and definitions. Drought: A Global Assessment Vol. I, chap. 1:3–18

Wong G, Van Lanen HAJ, Torfs PJJF. 2013. Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrological Sciences Journal. 58(2):253-270. doi: 10.1080/02626667.2012.753147.

Ye XC, Li XH, Xu CY, Zhang Q. 2016. Similarity, difference, and correlation of meteorological and hydrological drought indices in a humid climate region - the Poyang Lake catchment in China. Hydrology Research. 47(6):1211–1223. doi:10.2166/ nh.2016.214

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>