PERBANDINGAN PENGUKURAN RADIOMETER DAN RADIOSONDE PADA MUSIM HUJAN DI DRAMAGA BOGOR
Main Article Content
Abstract
Intisari
Balai Besar Teknologi Modifikasi Cuaca (BB-TMC) BPPT bekerjasama dengan Badan Meteorologi Klimatologi dan Geofisika (BMKG) melakukan kegiatan Intensive Observation Period (IOP) selama puncak musim hujan pada tanggal 18 Januari - 16 Februari 2016 di wilayah Jabodetabek. Salah satu peralatan yang digunakan untuk observasi adalah Radiometer dan Radiosonde. Pada penelitian ini akan difokuskan bagaimana perbandingan hasil dari pengukuran Radiometer dan Radiosonde selama kegiatan IOP terutama untuk parameter temperatur dan kelembapan relatif. Hasil dari perbandingan pada profil atmosfer di lapisan tertentu terlihat adanya data yang mempunyai kecenderungan jauh dan tidak memiliki kedekatan nilai. Untuk pengukuran temperatur dengan radiometer jika dibandingkan dengan radiosonde, korelasi data semakin kecil di lapisan atas, sebaliknya jika untuk pengukuran kelembapan relatif, korelasi data di lapisan atas lebih tinggi daripada korelasi data di lapisan bawah. Sedangkan jika dibandingkan pada satu waktu antara radiometer dan radiosonde menunjukkan kecocokan untuk kedua data, meskipun kecocokan data kelembapan relatif lebih kecil dibandingkan data temperatur.
Â
Â
Abstract
National Laboratory for Weather Modification (BB-TMC) BPPT has colaborated with Meteorological Climatology and Geophysic Agency (BMKG) in conducting Intensive Observation Period (IOP) during the peak of rainy season in Jabodetabek area on January 18th- February 16th 2016. One of the tools used in the observation is Radiometer and Radiosonde. This study will focus on comparison result between Radiometer and Radiosonde measurement during IOP especially for temperature and relative humidity parameters. The result in a particular layer of profile atmosphere indicates that the data tends to deviate away. The temperature difference measured using radiometer and radiosonde in the upper layer shows smaller value than that in the lower layer. In contrast,  the correlation for relative humidity data in the upper layers is higher than in the lower layers. Meanwhile when compared at one time indicate a good match for both data, although the data matches of the relative humidity are lower than the temperature data.
Â
Article Details
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d). Each author must sign the copyright transfer statement. The article will not be published unless this form has been signed and received.
OPEN ACCESS POLICY
Jurnal Sains & Teknologi Modifikasi Cuaca provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JSTMC by BBTMC-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JSTMC
References
Adler, J., Parmryd, I. (2010). Quantifying Colocalization by Correlation: The Pearson Correlation Coefficient is Superior to the Mander's Overlap Coefficient. Cytometry Part A, 77a(8), 733-742. doi: 10.1002/Cyto.A.20896
Battaglia, A., Saavedra, P., Rose, T., Simmer, C. (2010). Characterization of Precipitating Cloud by Ground Based Measurements with the Triple Frequency Polarized Microwave Radiometer ADMIRARI. Journal of Applied Meteorology and Climatology, 49(3), 394-414. doi: 10.1175/2009JAMC2340.1
Chan, P.W. (2009). Performance and Application of a Multi-Wavelength, Ground-Based Microwave Radiometer in Intense Convective Weather. Meteorologische Zeitschrift, 18(3), 253-265. doi: 10.1127/0941-2948/2009/0375
Hasan, M.I. (2002). Pokok–Pokok Materi Statistik 1. PT Bumi Aksara, Jakarta.
Hewison, T.J. (2007). 1D-VAR Retrieval of Temperature and Humidity Profiles from a Ground-Based Microwave Radiometer. IEEE Transactions on Geoscience and Remote Sensing, 45(7), 2163-2168. doi: 10.1109/TGRS.2007.898091
Iassamen, A., Sauvageot, H., Jeannin, N., Ameur, S. (2009). Distribution of Tropospheric Water Vapor in Clear and Cloudy Conditions from Microwave Radiometric Profiling. Journal of Applied Meteorology and Climatology, 48(3), 600-615. doi: 10.1175/2008JAMC1916.1
Madhulatha, A., Rajeevan, M., Ratnam, M.V., Bhate, J., Naidu, C.V. (2013). Nowcasting Severe Convective Activity over Southeast India Using Ground-Based Microwave Radiometer Observations. Journal of Geophysical Reseach, 118(1), 1-13. doi: 10.1029/2012jd018174
Martner, B.E., Wuertz, D.B, Stankov, B.B., Strauch, R.G., Westwater, E.R., Gage, K.S., Ecklund, W.L., Martin, C.L., Dabberdt, W.F. (1993). An Evaluation of Wind Profiler, RASS, and Microwave Radiometer Performance. Bulletin of The American Meteorological Society, 74(4), 599-613. doi: 10.1175/1520-0477(1993)074<0599:AEOWPR>2.0.CO;2
Mattioli, V., Westwater, E.R, Cimini, D., Gasiewski, A.J., Klein, M., Leuski, V.Y. (2008). Microwave and Millimeter-Wave Radiometric and Radiosonde Observations in an Arctic Environment. Journal of Atmospheric and Oceanic Technology, 25(10), 1768-1777. doi: 10.1175/2008jtecha1078.1
Montgomery, D.C., Runger, G.C. (2003). Applied Statistics and Probability for Engineers, Third Ed. John Wiley & Sons. Inc. New York.
Onwuegbuzie, A.J., Daniel, L., Leech, N.L. (2007). Pearson Product-Moment Correlation Coefficient. Encyclopedia of Measurement and Statistics, 2(1), 751–756.
Ratnam, M.V., Santhi, Y.D, Rajeevan, M., Rao, S.V.B. (2013). Diurnal Variability of Stability Indices Observed Using Radiosonde Observations over a Tropical Station: Comparison with Microwave Radiometer Measurements. Atmospheric Research, 124, 21-33. doi: 10.1016/J.Atmosres.2012.12.007
Saavedra, P., Battaglia, A., Simmer, C. (2012). Partitioning of Cloud Water and Rainwater Content by Ground-Based Observations with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) in Synergy with a Micro Rain Radar. Journal of Geophysical Research, 117, 1-18. doi: 10.1029/2011jd016579