ANALISIS PARAMETER RADAR DUAL POLARISASI PADA KEJADIAN HUJAN TANGGAL 14 FEBRUARI 2016 DI WILAYAH DKI JAKARTA

Main Article Content

Rini Mariana Sibarani
Ari Nugroho
Samba Wirahma

Abstract

Intisari

Radar Dual Polarisasi digunakan pada kegiatan Intensive Observation Periode (IOP) yang dilaksanakan pada tanggal 18 Januari  - 16 Februari 2016 di Puspiptek Serpong. Berdasarkan data hujan dari satelit TRMM tanggal 14 Februari 2016 terpantau kejadian hujan di wilayah Jakarta Timur dan Jakarta Selatan dengan intensitas 30–40 mm/h pada siang hingga sore hari. Kejadian hujan ini menyebabkan adanya genangan di beberapa titik di wilayah tersebut. Jika dilihat dari parameter keluaran radar, pada saat terjadi hujan maka nilai untuk setiap parameter sebagai berikut; untuk parameter rain terukur sebesar 20–30 mm/h. Parameter reflektivitas (Zh) berkisar 25-35 dBz yang menunjukkan bahwa hujan yang terjadi adalah hujan dengan sifat moderate, parameter Zdr berkisar 2–2,5 menunjukkan ukuran butir droplet hujan (D) > 2 mm , parameter beda perambatan fase (fdp) berkisar 200–250 dan nilai beda spesifik fase (Kdp) berkisar 0.4–2 yang membuktikan bahwa konsentrasi droplet hujan di wilayah tersebut cukup tinggi, serta nilai parameter koefisien korelasi (rhv) sebesar 0.85–1 yang menandakan bahwa partikel yang tertangkap radar adalah partikel hidrometeorologi. Parameter terakhir, kecepatan (V) bernilai positif 0–10 m/s yang menandakan partikel bergerak menjauhi radar dengan kecepatan yang tidak terlalu besar.

 

 

Abstract

Dual Polarization Radar is used on Intensive Observation Period (IOP) activities that was held on Januari 18 – Februari 16, 2016 at Puspiptek Serpong. Based on TRMM satellite data on February 14 2016, rainfall event is observed in East Jakarta and South Jakarta with the intensity of 30-40 mm/h in the afternoon. This rainfall caused inundation at some point in the region. When viewed from the radar output parameter during rain, the values for each parameter as follows; Rain ranges from 20-30 mm/h. Reflectivity (Zh) ranges from 25-35 DBZ which showed that the rain occurred was the rain with moderate nature, ZDR ranges from 2-2.5 indicates the grain size droplet of rain (D)> 2 mm, different propagation phase (fdp) ranges from 200-250 and the specific value of the phase difference (KDP) ranges from 0.4-2, which proves that the droplet concentration of precipitation in the region is quite high, and the value of the correlation coefficient (rhv) of 0.85-1 indicating that the particles which is captured by radar are hydrometeorology particles. Last parameter, velocity (V) is positive 0-10 m/s which indicates that the particles moves away from the radar at a not too large pace.

 

Article Details

Section
Articles

References

Awaludin, A., Nugroho, G.A., Rahayu, S.A. (2013). Analisis Kemampuan Radar Navigasi Laut Furuno 1932 Mark-2 untuk Pemantauan Intensitas Hujan. Jurnal Sains Dirgantara, 10(2), 90-103. doi: 10.30536/j.jsd.2013.v10.a1871

Chandrasekar, V., Hou, A., Smith, E., Bringi, V.N, Rutledge, S.A., Gorgucci, E., Petersen, W.A., Jackson, G.S. (2008). Potential Role of Dual-Polarization Radar in the Validation of Satellite Precipitation Measurements: Rationale and Opportunities. Bulletin of The American Meteorological Society, 89(8), 1127-1145. doi: 10.1175/2008BAMS2177.1

Doviak, R.J., Zrnic, D.S. (1993). Doppler Radar and Weather Observations (2nd ed.). Academic Press, 562 pages.

Furuno. (2013). Furuno Operator’s Manual Marine Radar Model 1832/1932/1942, Furuno Electric Co Ltd., Nishinomiya, Japan. http://www.Furunousa.com.

Kumjian, M.R. (2013). Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables. NWA: Journal of Operational Meteorology, 1(19), 226-242. doi: 10.15191/nwajom.2013.0119.

Li, S., Zhuang, X. (2009). Navigation Radar Signal Acquisition and Measurement System. Proceeding of The Ninth International Conference on Electronics Measurement and Instruments.

Mahafza, B.R. (2009). Radar Signal Analysis and Processing using Matlab. Taylor and Francis Group LLC. Boca Raton. USA.

Marshall, J.S., Palmer, W.M.K. (1948). The Distribution of Raindrops with Size. Journal of Meteorology, 5, 165–166.

Marsili, N. (2010). Dual-Polarization Radar. Dupage County Advanced Spotter Program.

Nugroho, G.A., Munir, M.M., Khairurrijal. (2015). A Computer-Based Marine Automatic Radar for Rain Detection. Applied Mechanics and Materials, 771, 9-12. doi: 10.4028/www.scientific.net/AMM.771.9

Pedersen, L. (2004). Scaling Properties of Precipitation - Experimental Study Using Weather Radar And Rain Gauge. Thesis. Faculty of Engineering and Science Department of Civil Engineering Aalborg University, Aalborg, Denmark.

Savina, M. (2011). The Use of a Cost Effective X-Band Weather Radar in Alpine Region. A dissertation for degree of Doctor of Sciences, Institute of Environmental Engineering ETH Zurich. doi: 10.3929/ethz-a-007141834

Selex Systems Integration GMBH. (2010). Dual - Polarization Weather Radar Handbook 2nd Edition.

Selex Systems Integration GMBH. (2010). Rainbow® 5 Product Presentation.

Uijlenhoet, R. (2001). Raindrop Size Distributions and Radar Reflectivity-Rain Rate Relationship for Radar Hydrology. Hydrology and Earth System Sciences, 5(4), 615-627. doi: 10.5194/hess-5-615-2001

Wakimoto, R.M., Bringi, V.N. (1988). Dual-Polarization Observations of Microbursts Associated With Intense Convection: The 20 July Storm During The MIST Project. Monthly Weather Review, 116, 1521-1539. doi: 10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2

Most read articles by the same author(s)

<< < 1 2 3 4 > >>