Kemampuan Beberapa Tumbuhan Air dalam Menurunkan Pencemaran Bahan Organik dan Fosfat untuk Memperbaiki Kualitas Air

Main Article Content

Lismining Pujiyani Astuti
Indriatmoko Indriatmoko

Abstract

ABSTRACT

Aquatic plants are important part of aquatic ecosystem that can be used as an phytoremidiation agent, trapping organic matter in eutrophic waters as well as cleaning and controlling heavy metal pollution, pesticides and oil. The aim of research to assess the ability of some aquatic plants to organic matter and phosphate reduction for improve water quality. Research conducted at the Greenhouse of Institution Research for Fishes Resources Rehabilitation in May 2016. The study using factorial completely randomized and all treatment were conducted in triplicate. Aquatic plants are used Azolla sp., Spirodela sp., Duckweed (Lemna sp.), Salvinia sp., Water lettuce (Pistia sp), and water hyacinth (Eicchornia crassipes). Water media used are high stock solution of organic matter derived from fish farming waste water containing undigested, food, faeces and urine of fish. Water sampling was conducted on day 0 (T0), 2nd (T2), 5th (T5) and 9th (T9) after planting. The results showed that the total organic matter) and P-PO4 significantly different based on day of sampling, while the aquatic plant treatment significantly different at P-PO4 concentration, but not significantly different from the organic matter. However, based on the percentage change showed that the wood lettuce (Pistia sp) capable of lowering the BOT and P-PO4 as much as 55.52% and 60.62%, and the water hyacinth can lower both BOT and P-PO4 as much as 23.38 % and 92.68%. Relative growth rate (RGR) was higher in the aquatic plants that tend to be small as Spirodela sp,  Lemna sp and with doubling time (DT) is relatively short. Water hyacinth plants tend to have a lower RGR values and DT are relatively long. The value of RGR and DT related to the availability of nutrients.

Keywords: Aquatic Plants, Water Quality, Relative Growth Rate (RGR), Doubling Time (DT)

ABSTRAK

Tumbuhan air merupakan bagian penting dari ekosistem perairan yang dimanfaatkan sebagai agen fitoremediasi, perangkap bahan organik di perairan eutrofik serta membersihkan dan mengontrol pencemaran logam berat, pestisida dan minyak. Tujuan penelitian untuk mengkaji kemampuan beberapa tumbuhan air dalam mengurangi pencemaran bahan organik dan fosfat dalam upaya memperbaiki kualitas perairan. Penelitian dilakukan di laboratorium rumah kaca Balai Riset Pemulihan Sumberdaya Ikan pada bulan Mei 2016. Penelitian menggunakan Rancangan Acak Lengkap Faktorial dengan tiga ulangan. Tumbuhan air yang digunakan Azolla sp., Spirodela sp., Mata lele (Lemna sp.), Kiambang (Salvinia sp.), Kayu apu (Pistia sp.), dan Eceng Gondok (Eicchornia  crassipes). Media air yang digunakan adalah larutan stok tinggi bahan organik berasal dari air limbah budidaya ikan yang mengandung sisa pakan yang tidak tercerna, feses dan urin ikan. Pengambilan sampel air dilakukan pada 0 hari (T0), 2 hari (T2), 5 hari (T5) dan 9 hari (T9) setelah penanaman. Hasil penelitian menunjukkan bahwa bahan organik total (BOT) dan P-PO4 berbeda nyata pada perlakuan hari, sementara perlakuan jenis tumbuhan air berbeda nyata pada konsentrasi P-PO4 namun tidak berbeda nyata pada BOT. Persentase perubahan menunjukkan bahwa kayu apu mampu menurunkan BOT dan P-PO4 sebesar 55,52% dan 60,62% serta eceng gondok mampu menurunkan BOT dan P-PO4 sebesar 23,38% dan 92,68%. Nilai relative growth rate (RGR) lebih tinggi pada tanaman air yang cenderung kecil seperti Lemna sp dan Spirodela sp dengan doubling time (DT) yang relatif pendek. Tanaman eceng gondok cenderung mempunyai nilai RGR rendah dan DT yang relatif lama. Besarnya nilai RGR dan DT berkaitan dengan ketersediaan nutrisi.

Kata kunci: Tumbuhan Air, Kualitas Air, Relative Growth Rate (RGR), Doubling Time (DT)


Article Details

Section
RESEARCH ARTICLES

References

Hidayati, N. 2005. Fitoremediasi dan Potensi Tumbuhan Hiperakumulator (Phytoremediation and Potency of Hyperaccumulator Plants). Hayati 12 (1) : 35 – 40.

Umarudin, J. Nur, A. Wulandari , M. Izzati. 2015. Efektivitas Tanaman Lemna (Lemna perpusilla Torr) Sebagai Agen Fitoremediasi Pada Keramba Jaring Apung (KJA) Disekitar Tanjungmas Semarang. Bioma 17 (1): 1-8.

Erlania. 2010. Pengendalian limbah budidaya perikanan melalui pemanfaatan tumbuhan air dengan sistem constructed wetland. Media Akuakultur Vol 5 (2): 129-137.

Zhanga, B.Y., J.S. Zhenga, R.G. Sharp. 2010. Phytoremediation in Engineered Wetlands: Mechanisms and Applications . International Society for Environmental Information Sciences 2010 Annual Conference (ISEIS). Proceedia Environmental Sciences 2 : 1315- 1325

Haider, S.Z. Malik, K.M.A, and Rahman, M.M. (1984). Mechanism of absorption of chemical species from aqualons medium by water hyacinth and prospects of its utilization. Proceedings of 10th International Conference on Water Hyacinth. Hyderabad, India: 7-11.

Ajayi, Tolu Olufunmilayo dan Atoke Olaide Ogunbayo. 2012. Achieving Environmental Sustainability In Wastewater Treatment By Phytoremediation With Water Hyacinth (Eicchornia Crassipes). Journal of Sustainable Development 5 (7).

Indrasti, Nastiti Siswi., Suprihatin, Burhanudin dan Aida Novita. 2006. Penyerapan Logam Pb Dan Cd Oleh Eceng Gondok : Pengaruh Konsentrasi Logam Dan Lama Waktu Kontak. J. Tek. Ind. Pert. 16(1) : 44-50

Pistori, RETI., Camargo, Henry Silva. 2004. Relative Growth Rate and Doubling Time of the Submerged Aquatic Macrophyte Egeria densa Planch. Acta Limnol. Bras. 16 (1): 77-84

Zhou, X., G. Wang, F Yang. 2011. Characteristics of growth, nutrient uptake, purification effect of Ipomoea aquatica, Lolium multiflorum, and Sorghum sudanense grown under different nitrogen levels. Desalination 273 : 366–374

Davis, J.C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. Journal of the Fisheries Board of Canada 32, 2295-2332

Sooknah, RD., AC Wilkie. 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering 22: 27–42

Ratnani, RD., I. Hartati. L. Kurniasari. 2011. Pemanfaatan eceng gondok (Eicchorrnia crassipes) untuk menurunkan kandungan COD (Chemical Oxygen Demand), pH, bau, dan warna pada limbah cair tahu. Momentum 7(1) : 41 – 47

Minardi, S. 2013. Kajian Terhadap Pengaturan Pemberian Air Dan Dosis Tsp Dalam Mempengaruhi Keragaan Tanaman Jagung (Zea mays. L.) Di Tanah Vertisol. Sains Tanah-Journal of Soil Science and Agroclimatology, 2(1): 35-40

Kutty, SRM., SNI Ngatenah, MH Isa, A. Malakahmad. 2009. Nutrients Removal from Municipal Wastewater Treatment Plant Effluent using Eichhornia crassipes. World Academy of Science, Engineering and Technology International. Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 3 (12): 414- 419

Wang, H., H. Zhang, G. Cai. 2011. An application of phytoremidiation to River pollution remidiation. Procedia Enviromental Sciences: 3rd International Conterence on Environmental Science and information Application Technology (ESIAT 2011) 10:1904-1907.

Villamagna, AM and BR. Murphy. 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eicchornia crassipes): a review . Freshwater Biology 55: 282–298.

Fonkou, T, P Agendia, I. Kengne, A Akoa and J Nya. 2002. Potentials of water lettuce (Pistia stratiotes) in domestic sewage treatment with macrophytic lagoon systems in Cameroon. Proceedings of International Symposium on Environmental Pollution Control and Waste Management (EPCOWM’2002) :709-714.

Xu, J., G. Shen . 2011. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technology 102 : 848–853.

Agren, G.I., 2008. Stoichiometry and nutrition of plant growth in natural communities. Annual review of ecology, evolution, and systematics, 153-170.

Oliver, JD. 1993. A Review of the Biology of Giant Salvinia (Salvinia molesta Mitchell). J. Aquat. Plant Manage 31: 227-231.

Sadeghi, R., R. Zarkami, K. Sabetraftar, P. Van Damme. 2013. A review of some ecological factors affecting the growth of Azolla spp. Caspian J. Env. Sci. 2013, Vol. 11 (1): 65~76.

Bianchini Jr, I., MB Cunha-santino, JAM Milan, CJ Rodrigues, JHP Dias. 2015. Model parameterization for the growth of three submerged aquatic macrophytes . J. Aquat. Plant Manage 53: 64–73.

Eid, EM., and KH. Shaltout. 2016. Population dynamics of Eichhornia crassipes (C. Mart.) Solms in the Nile Delta, Egypt. Plant Species Biology : 1-12 doi: 10.1111/1442-1984.12154.

Gutiérrez, E.L., E.F. Ruiz , E.G. Uribe, J.M. Martínez. 2001. Biomass and Productivity of Water Hyacinth and Their Application in Control Programs. Biological and Integrated control of water hyacinth, Eicchornia crassipes. ACIAR Proceeding 102. 109 – 119.

Rahmawati, A., B. Zaman, Purwono. 2016. Kemampuan tanaman kiambang (Salvinia molesta) dalam menyisihkan bod dan fosfat pada limbah domestik (grey water) dengan sistem fitoremediasi secara kontinyu. Jurnal Teknik Lingkungan Vol. 5 (4) : 1-10.

Dewi, R.K, WR Melani, A. Zulfikar. 2018. Efektivitas dan efisiensi fitoremediasi orthofosfat pada deterjen menggunakan kiambang (Pistia stratiotes). jurnal.umrah.ac.id. 1-10 diakses 2 Maret 2018

Hernayanti & E. Proklamasiningsih. 2008. Fitoremediasi limbah cair batik menggunakan kayu apu (Pistia stratiotes l.) Sebagai upaya untuk memperbaiki kualitas air. Jurnal Pembangunan Pedesaan Vol. IV (3):165 – 172.

Sudjana, B. 2014. Pengunaan Azolla untuk pertanian berkelanjutan. Jurnal Ilmiah Solusi Vol. 1 (2): 72-81.

Bahri, S. 2010. Fitoremediasi timbal (Pb) dalam air tercemar oleh tumbuhan air great duckweed (Spirodela polyrhiza). Jurnal Teknik Hidraulik Vol. 6 (2): 95 – 192

Hermawati, E., Wiryanto, Solichatun. 2005. Fitoremediasi Limbah Detergen Menggunakan Kayu Apu (Pistia stratiotes L. ) dan Genjer (Limnocharis flava L.). BioSMART 7(2): 115-1.