Perancangan ID Fan dan Cerobong pada Unit Pembangkit Listrik Tenaga Sampah
Main Article Content
Abstract
ABSTRACT
The problem for big cities in implementing the MSW disposal method is the  land availability. Hierarchically, a suitable method for solving this condition is not to dispose the MSW into the landfill but to treat it in the thermal processing, such as incineration. The bonus of this incineration is the heat dissipation that can be utilized to generate electricity. Burning MSW through incinerator that converts into energy is often called a Waste to Energy (WtE) or PLTSa.  Beside the benefit of the high temperature flue gas that can produce electricity, PLTSa also emits major pollutants in the flue gas such as particulates, SO2, NOx, CO, HCl, dioxins and furans. In order to meet the emission standards, the PLTSa design has to be equipped with APCD’s such as cyclone, semi-dry scrubber and bag filter. ID fan withdraws the flue gas into the chimney before discharging it into the ambient air through the top exit of chimney. The main parameters in the design of the ID fan and chimney are the quantity, quality and temperature of the flue gas as well as the environmental parameters, such as air temperature, atmospheric stability, wind speed and direction. The design of the chimney was carried out with a technical calculation approach, simulation of Gaussian dispersion model and the compliance of related regulations from the MoEF. In the design of PLTSa with a waste capacity of 350 tons/day, specification of the stack is 2.02 m diameter and the 70 m height whereas ID fan is 70,000 cfm flue gas flowrate, 400 BHP power, 80% mechanical efficiency and  25 inch H2O pressure pump.
Keywords: Waste-to-energy, flue gas, ID fan, chimney
ABSTRAK
Salah satu masalah bagi kota-kota besar dalam menerapkan metode pengolahan sampah adalah ketersediaan lahan. Secara hierarkis metode yang mampu memenuhi kondisi ini adalah pengolahan dengan metode termal sekaligus memanfaatkan buangan panas yang ada untuk membangkitkan energi listrik. Pembakaran sampah dengan insinerator yang merubah sampah menjadi energi ini sering juga disebut   Pembangkit Listrik Tenaga Sampah (PLTSa). Salah satu hasil samping PLTSa adalah flue gas yang temperaturnya tinggi serta mengandung polutan utama seperti partikulat, SO2, NOx dan CO.  Agar memenuhi baku mutu emisi,  rancangan PLTSa dalam studi ini dilengkapi dengan unit cyclone, semi dry scrubber, bag filter dan ID fan serta cerobong sebagai unit pembuangan akhir flue gas. Sebagai unit akhir pembuang flue gas ke lingkungan, peran cerobong sangat penting sehingga perlu beberapa pendekatan dalam perancangan. Parameter desain utama dalam perancangan cerobong adalah kuantitas, kualitas dan suhu dari flue gas serta parameter meterologis lingkungan seperti suhu udara, stabilitas atmosfer, kecepatan dan arah angin. Dalam perancangan cerobong pada studi ini dilakukan dengan pendekatan perhtiungan teknis, simulasi model dispersi Gaussian serta peraturan terkait dari Kementerian Lingkungan Hidup dan Kehutanan. Dalam rancangan PLTSa  dengan kapasitas olah sampah 350 ton/hari ditetapkan diameter cerobong 2,05 m dengan tinggi 70 m, serta diperlukan ID fan sebagai pendorong flue gas dengan spesifikasi Q = 70.000 cfm, BHP = 400, mechanical efficiency 80% dan static pressure pompa = 25 inch H2O.
Kata kunci: Sampah menjadi energi, gas buang, ID fan, cerobong
Article Details
JTL provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JTL by PTL-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JTL
References
Purwanta, W. 2017. Kajian Kebutuhan Kualitas Dan Kuantitas Air Pada Unit Pengolah Sampah Proses Termal (Waste to Energy Incinerator). Jurnal Hidrosfir Indonesia, Vol.13 No.2, p 91-98.
McDougall, F.R, P.R. White, M. Franke, & P.Hindle. 2001. Integrated Solid Waste Management: a Life Cycle Inventory, Black Well Science Publishing, Oxford, UK.
Damanhuri, E., & Tri Padmi. 2016. Pengelolaan Sampah Terpadu. Penerbit ITB. Bandung.
Martin, E.J. & J.H. Johnson. 1987. Hazardous Waste Management. Van Nostrand Reinhold, New York.
European Commission. 2006. Reference Document on the Best Available Techniques for Waste Incineration
Niessen, W. R. 2002. Combustiop and Incineration Processes. Marcel-Dekker, Inc. New York
Mahanta, P. 2017. Energy Conservation and Waste Heat Recovery. Indian Institute of Technology, Guwahati, India
World Bank. 1999. Technical Guidance Report, Municipal Solid Waste Incineration, Washington, D.C. 20433, U.S.A.
Cooper, C., D., & F.C. Alley. 1986. Air Pollution Control: A Design Approach. PWS Engineering, Boston.
Teir, S., & Antto Kulla. 2002. Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications
Adel, A., & Abdel-Rahman. 2008. On The Atmospheric Dispersion and Gaussian Plume Model. 2nd International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate (WWAI'08), Corfu, Greece, October 26-28, 2008
Dinas Lingkungan Hidup Tangsel. 2015. Kajian kelayakan pengelolaan sampah terintegrasi di kota Tangerang Selatan – Laporan Akhir
Kikkawa, H., H. Ishizaka, K. Kai, & T. Nakamoto. 2008. DeNOx, DeSOx, and CO2 Removal Technology for Power Plant. Hitachi Review. Vol 57, No.5.
Turner, J.H., & A. S. Viner. 2017. Sizing and Costing of Fabric Filters. Air and Waste Management Association.
Bureau of Energy Efficiency (BEE), Government of India. Energy Efficiency Guide Book, Chapter 5, p 93-112. 2004.
Sherlock, R.H. & E.J. Lesher. 2017. Role of Chimney Design in Dispersion of Waste Gases. Journal of the Air & Waste Management Association. Vol.4 no. 2, Agustus 1954.
Carson, J. E., & Harry Moses. 1969. The Validity of Several Plume Rise Formulas. Journal of Air Pollution, 19:11, 862-866.
Liandy, M.K.G., E. Suswantoro, & H. Yulinawati. 2015. Analisis Sebaran Total Suspended Particulate (TSP), Sulfur Dioksida (NO2), Dan Nitrogen Dioksida (NO2) di Udara Ambien Dari Emisi Pembangkit Listrik Tenaga Uap (PLTU) Banten 3 Lontar Denagn Model Gaussian. Jurnal Teknik Lingkungan. Vol.7 No.2 Des 2015, 47-56.
Awasthi, S., M. Khare, & P. Gargava. 2006. General plume dispersion model (GPDM) for point source emission. Environmental Modeling and Assessment (2006) 11: 267-276.
Bassiouny, M. K., A. A. Hussien, & Mostafa El Shafie. 2014. Calculations of Temperature Decay for Industrial Chimney by Using Modified Analytical Model. Journal of Mechanical and Civil Engineering (IOSR-JMCE), Vol. 11, Issue 1, Jan. 2014, PP 13-24.